5A 분자체는 CaA형 제올라이트라고도 알려진 입방 격자 구조의 일종의 칼슘형 알루미노규산염입니다. 5A 분자체는 n-이성체화된 알칸의 분리, 산소와 질소의 분리는 물론 천연 가스, 암모니아 분해 가스 및 기타 산업용 가스의 건조에 널리 사용되는 기공 구조와 우수한 선택적 흡착을 개발했습니다. 액체. 5A 분자체는 0.5 nm의 유효 기공 크기를 갖고, 기공 분포의 측정은 일반적으로 물리적 흡착 기구를 사용한 기체 흡착을 특징으로 합니다. 5A 분자체의 유효 기공 크기는 약 0.5 nm이며, 기공 크기 분포는 일반적으로 물리적 흡착 장비를 사용한 가스 흡착을 특징으로 합니다. 5A 분자체의 비표면 및 기공 크기 분포는 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기로 특성화되었습니다. 테스트 전 샘플을 진공 하에서 300 ℃ 에서 6시간 동안 가열하여 탈기시켰다 . 도 1에 도시된 바와 같이, 다점 BET 방정식에 의해 시료의 비표면적은 776.53 m 2 /g 으로 계산되었으며 , 시료의 미세다공면적은 672.04 m 2 /g 으로 얻어졌으며 , 외부 표면은 t-plot 방법으로 측정한 면적은 104.49 m 2 /g , 미세다공체의 부피는 0.254 cm 3 /g 으로 이 분자체의 미세다공 면적이 약 86.5%를 차지하는 것으로 나타났다. 또한, 이 5A 분자체의 N 2 흡착-탈착 등온선 플롯(그림 2, 왼쪽)을 분석한 결과, 흡착 등온선은 상대압력이 0일 때 상대압력이 증가함에 따라 흡착량이 급격하게 증가함을 보여준다. 작고, 미세기공이 채워지는 현상이 발생하고, 특정 값에 도달한 후 곡선이 상대적으로 평평해지며, 이는 시료에 미세기공이 풍부하다는 것을 의미합니다. SF 모델(그림 2, 오른쪽 패널)을 사용한 미세 다공성 기공 크기 분포 계산은 0.48 nm에서 집중된 미세 다공성 기공 크기 분포를 산출했으며 이는 5A 분자체의 기공 크기와 일치합니다. 그림 1 5A Molecular Sieve의 비표면적 테스트 결과(왼쪽)와 t-Plot 결과(오른쪽) 그림 2 5A 분자체 샘플의 N 2 - 흡착 및 탈착 등온선(왼쪽)과 SF-기공 크기 분포 플롯(오른쪽) CIQTEK 자동 BET 표면적 및 다공성 측정 분석기 | EASY-V 3440 EASY-V 3440은 CIQTEK이 독자적으로 개발한 정체적법(Static Volumetric Method)을 이용하여 BET 비표면적 및 기공크기 분석 장비입니다 . ▪ 비표면적 테스트, 범위 0.0005(m 2 /g) 이상. ▪ 기공 크기 분석: 0.35 nm-2 nm(미세 기공), 미세 기공 크기 분포 분석; 2nm~500nm(중공극 또는 거대공극). ▪ 4개의 분석 스테이션, 4개의 샘플을 동시에 테스트합니다. ▪ 분자펌프가 장착되어 있습니다.
더보기금속-유기 골격(MOF)의 하위 클래스인 제올라이트 이미다졸륨 골격(ZIF) 재료인 ZIF 재료는 무기 제올라이트의 높은 안정성과 MOF 재료의 높은 비표면적, 높은 다공성 및 조정 가능한 기공 크기를 결합하여 다음 분야에 적용할 수 있습니다. 효율적인 촉매 및 분리 공정을 통해 ZIF 및 그 파생물은 촉매 작용, 흡착 및 분리, 전기 화학, 바이오 센서 및 생물 의학 및 응용 전망이 좋은 기타 분야에서 사용할 수 있는 좋은 잠재력을 가지고 있습니다. 다음은 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기 를 사용하여 ZIF 분자체의 특성화에 대한 사례 연구입니다 . 왼쪽 그림 3에 표시된 것처럼 이 ZIF 분자체의 비표면적은 857.63m 2 /g입니다. 이 물질은 비표면적이 커서 반응성 물질의 확산에 유리합니다. N 2 -흡착 및 탈착 등온선(그림 3, 오른쪽)으로부터 낮은 분압 영역(P/P 0 < 0.1) 에서 흡착이 급격히 증가하는 것을 볼 수 있으며 이는 충전에 기인합니다. 이는 물질에 일정량의 미세다공성 구조가 있음을 나타내며 P/P 0 약 0.40 ~ 0.99 범위 내에 히스테리시스 루프가 있어 이 ZIF에 메조다공성 구조가 풍부함을 나타냅니다. 분자체. SF 기공 크기 분포 그래프(그림 4, 왼쪽)는 이 샘플에서 가장 이용 가능한 기공 크기가 0.56 nm임을 보여줍니다. 이 ZIF 분자체의 총 기공 부피는 0.97 cm 3 /g, 미세 다공성 부피는 0.64 cm 3 /g으로 미세 기공이 66%이고, 미세 다공성 구조는 시료의 비표면적을 크게 증가시킬 수 있지만, 분자체는 더 작은 기공 크기로 인해 특정 조건에서 촉매 활성을 제한합니다. 그러나 특정 조건에서는 기공 크기가 작을수록 촉매 반응의 확산 속도가 제한되어 분자체 촉매의 성능이 제한되지만 메조 다공성 구조가 미세 다공성 구조의 이러한 결함을 분명히 보완할 수 있으므로 구조는 미세다공성과 메조기공의 결합은 단일 기공을 갖는 전통적인 분자체의 물질 전달 능력의 한계 문제를 효과적으로 해결할 수 있습니다. 그림 1 ZIF 분자체에 대한 비표면적 테스트 결과(왼쪽)와 N 2 -흡착 및 탈착 등온선(오른쪽) 그림 2 ZIF 분자체의 SF-기공 크기 분포(왼쪽)와 NLDFT-기공 크기 분포(오른쪽)
더보기주사전자현미경을 통한 구리박 형태의 특성화는 연구원과 개발자가 구리박의 준비 공정과 성능을 최적화하고 개선하여 고성능 리튬 이온 배터리의 기존 및 미래 품질 요구 사항을 더욱 충족시키는 데 도움이 될 수 있습니다. 광범위한 구리 응용 분야 구리 금속은 연성, 높은 전도성, 가공 용이성 및 저렴한 가격으로 인해 리튬 이온 배터리 및 인쇄 회로 기판에 널리 사용됩니다. 동박은 생산 공정에 따라 캘린더 동박과 전해 동박으로 분류됩니다. 캘린더링된 구리 호일은 순도가 높고 거칠기가 낮으며 기계적 특성이 높지만 비용이 더 많이 드는 구리 블록을 반복적으로 압연하여 만들어집니다. 반면 전해동박은 가격이 저렴하다는 장점이 있어 현재 시장의 주류 동박제품이다. 전해 동박의 구체적인 공정은 (1) 구리를 용해시키는 것입니다. 원료 구리를 용해시켜 황산-황산구리 전해질을 형성하고, 다중 여과를 통해 불순물을 제거하여 전해질의 순도를 향상시키는 것입니다. (2) 원박 준비 : 일반적으로 연마 된 순수 티타늄 롤을 음극으로 사용하여 전해질의 구리 이온을 음극 표면으로 환원시켜 특정 두께의 구리 층을 형성합니다. (3) 표면처리 : 음극롤에서 원료박을 박리한 후 후처리를 거쳐 완성된 전해동박을 얻을 수 있다. 그림 1 전해동박 생산공정 리튬 이온 배터리의 구리 금속 리튬이온전지는 주로 활물질(양극재, 음극재), 격막, 전해질, 전도성 집전체로 구성된다. 양극 전위가 높고 구리는 더 높은 전위에서 산화되기 쉽기 때문에 구리 호일은 리튬 이온 배터리의 양극 집전체로 자주 사용됩니다. 구리박의 인장 강도, 신장률 및 기타 특성은 리튬 이온 배터리의 성능에 직접적인 영향을 미칩니다. 현재 리튬 이온 배터리는 주로 '가벼움과 박형' 추세를 향해 개발되고 있으므로 전해 동박의 성능도 초박형, 높은 인장 강도, 높은 연신율 등 더 높은 요구 사항을 제시합니다. 동박의 기계적 성질을 향상시키기 위해 전해 동박 공정을 효과적으로 개선하는 방법이 향후 동박의 주요 연구 방향이다. 호일 제조 공정에서 적절한 첨가제 배합은 전해 동박의 성능을 조절하는 가장 효과적인 수단이며, 전해 동박의 표면 형태 및 물리적 특성에 대한 첨가제의 영향에 대한 정성적, 정량적 연구는 학자들에게 연구 핫스팟이었습니다. 국내외에서. 재료 과학에서 미세 구조는 기계적 특성을 결정하며, 주사 전자 현미경을 사용하여 표면 미세 형태 및 미세 구조의 변화를 특성화하면 연구자가 미세 구조와 기계적 특성 간의 관계를 확립하는 데 도움이 될 수 있습
더보기환경오염은 지구적 위기의 하나로 인간의 생명과 건강에 영향을 미치고 있습니다. 공기, 물, 토양 오염물질 중에는 새로운 종류의 환경적으로 유해한 물질인 EPFR(환경 지속성 자유 라디칼)이 있습니다. EPFR은 환경 어디에나 존재하며 세포 및 신체 손상을 유발하고 암의 원인 중 하나이며 강력한 생물학적 위험 효과를 갖는 반응성 산화물 종(ROS)의 생성을 유도할 수 있습니다. 전자 상자성 공명(EPR 또는 ESR) 기술은 EPFR을 감지하고 정량화하여 위험의 원인을 찾고 근본적인 문제를 해결할 수 있습니다. EPFR이란 무엇입니까? EPFR은 수명이 짧은 자유 라디칼에 대한 전통적인 우려와 관련하여 제안된 새로운 종류의 환경 위험 물질입니다. 그들은 수십 분에서 수십 일 동안 환경에 존재할 수 있고 수명이 길며 안정적이고 지속적입니다. 안정성은 구조적 안정성에 바탕을 두고 있어 쉽게 분해되지 않으며, 서로 반응하여 터지기 어렵습니다. 지속성은 환경 중의 다른 물질과 쉽게 반응하지 않아 환경에서 지속될 수 있다는 불활성에 기초합니다. 일반적인 EPFR은 사이클로펜타디에닐, 세미퀴논, 페녹시 및 기타 라디칼입니다. 일반적인 EPFR EPFR은 어디에서 오는가? EPFR은 대기 미립자 물질(예: PM 2.5), 공장 배출물, 담배, 석유 코크스, 목재 및 플라스틱, 석탄 연소 미립자, 수역의 용해성 분획, 유기적으로 오염된 토양 등과 같은 광범위한 환경 매체에서 발견됩니다. EPFR은 환경 매체에서 광범위한 운송 경로를 가지고 있으며 수직 상승, 수평 운송, 수역으로의 수직 퇴적, 육지로의 수직 퇴적 및 수역의 육지 이동을 통해 운송될 수 있습니다. 이동 과정에서 새로운 반응성 라디칼이 생성될 수 있으며, 이는 환경에 직접 영향을 미치고 자연 오염원의 원인이 됩니다. EPFR의 형성 및 멀티미디어 전송 (Environmental Pollution 248 (2019) 320-331) EPFR 검출을 위한 EPR 기술 적용 EPR(ESR)은 짝을 이루지 않은 전자를 포함하는 물질을 직접 검출하고 연구할 수 있는 유일한 파동분광법 기술로, 높은 감도와 실시간 현장 모니터링 등의 장점으로 인해 EPFR 검출에 중요한 역할을 합니다. EPFR 검출을 위해 EPR(ESR) 분광학은 공간적 차원과 시간적 차원 모두에서 정보를 제공합니다. 공간적 차원은 자유 라디칼의 존재를 증명하고 분자 구조 등에 대한 정보를 얻을 수 있는 EPR 스펙트럼을 의미합니다. EPR 테스트를 통해 샘플 내 자유 라디칼과 같은 종을 분석할 수 있으며 연속파 EPR 스펙트럼은 다음과 같은 정보를 제공할 수 있습니다. g-인자 및 초미세 결합 상수 A로, 이를 통해 연구자들은 자유 라디칼의 전자 구조와 같은 정보를 얻을 수 있습니다. 시간 차원은 EPR 신호의 현재 시간을 모니터링하여 EPFR의 반감기를 추론할 수 있음을 의미합니다. 토양 환경에서 EPFR 검출에 EPR 기술 적용 석유 처리, 저장, 운송 및 저장 탱크에서의 누출 가능성은 모두 토양 오염에 취약합니다. 다양한 휘발성, 반휘발성, 살충제 및 PCB로 오염된 토양을 복원하기 위해 열처리 기술을 사용할 수 있지만 가열은 토양의 물리화학적 특성을 변화시킬 수 있습니다. 토양 내 PCP 및 EPFR에 대한 저온 열처리 효과는 EPR 기술을 사용하여 연구할 수 있습니다. 닫힌 가열(무산소 조건)과 개방형 가열(산소가 풍부한 조건)의 두 가지 가열 유형을 사용하여 토양을 열처리하고 EPR(ESR)에 대해 테스트했습니다. 테스트 결과는 개방형 토양에서 약간 더 넓고 약한 EPR(ESR) 라디칼 신호를 보여 주었으며, 이는 개방형 가열로 인해 산소 중심 구조를 가진 PCP 라디칼 또는 기타 유사한 라디칼이 형성되었음을 나타냅니다. 가장 높은 EPFR 농도는 100°C의 개방 가열에서 10 x 1018 spin/g이었고, 75°C의 폐쇄 가열에서는 12 x 1018 spin/g이었습니다. 결과는 PCP로 오염된 토양의 저온 처리가 PCP를 충분히 오랜 시간 동안 환경에 존재할 수 있는 더 독성이 강한 EPFR로 전환할 수 있음을 시사합니다. 폐쇄형 및 개방형 토양의 EPR 스펙트럼과 EPFR 및 PCP의 해당 농도(Environ Sci Technol, 2012, 46(11): 5971-5978) 담배 연기 내 EPFR 검출을 위한 EPR 기술 적용 담배 연기는 입자/물방울(TPM, 총 미립자 물질)과 기체상 화학 물질(독성 가스, 휘발성 유기 화합물, 단명성 라디칼 등)로 구성된 에어로졸입니다. TPM에는 고농도의 장수명 EPFR, 안정적인 라디칼이 포함되어 있습니다. 수산기 라디칼(-OH)의 형성을 통해 DNA 손상을 유발하여 인간 건강에 장기적으로 부정적인 영향을 미치는 원인입니다. 기존 담배의 경우 탄소 중심의 자유 라디칼이 존재하므로 EPR 기술로 검출할 수 있습니다. 최신 전자 담배의 경우 EPR 기술을 사용하면 전자 담배를 흡입하는 동안 생성된 자유 라디칼을 측정하고 TPM에서 각각 EPFR 생성 및 ROS 생성을 정량화할 수 있습니다. 전자담배 TMP에서 생성되는 하이드록실라디칼의 양 (환경과학과 기술 2020 54(9), 5710-5718) 석탄 채굴 지역의 EPFR 검출에 EPR 기술 적용 중국 윈난성 쉬안웨이(Xuanwei)는 폐암 발병률이 높은 지역이다. 이 지역은 유연탄 매장량이 풍부하고 주민들은 일상생활과 산업 생산에 유연탄을 사용하고 있습니다. 역청탄이 연소되면 폐암 발생률이 높은 주요 원인으로 꼽히는 다환방향족탄화수소(PAH) 등 물질을 함유한 오염물질이 발생한다. 다환방향족탄화수소(PAH)는 환경에 가장 널리 분포된 잠재적 발암성 및 기형 유발 화학 오염물질입니다. 분자 자체는 상자성이 아니지만 실리카-알루미늄 촉매의 작용으로 해당 양이온 라디칼로 쉽게 산화됩니다. 촉매 표면에 흡착...
더보기산호라는 이름은 산호 벌레 군집과 그 골격의 일반적인 이름인 고대 페르시아어 상가(돌)에서 유래되었습니다. 산호 폴립은 Acanthozoa 문에 속하는 산호로, 원통형 몸체를 가지고 있으며 다공성과 가지 성장으로 인해 살아있는 암석이라고도 불리며 많은 미생물과 물고기가 서식할 수 있습니다. 남중국해 등 열대해역에서 주로 생산된다. 백산호의 화학적 조성은 주로 CaCO 3 이며 탄산염형이라 불리는 유기물을 함유하고 있습니다. 골든, 블루, 블랙 산호는 케라틴형이라 불리는 케라틴으로 구성되어 있습니다. 붉은 산호(분홍빛, 살빛 붉은색, 장미빛 붉은색, 연한 빨간색에서 진한 빨간색 포함) 껍질은 CaCO 3 를 함유하고 있으며 케라틴이 더 많습니다. 골격 구조 특성에 따른 산호. 판상 산호, 4단 산호, 6단 산호, 8단 산호의 네 가지 범주로 나눌 수 있으며, 현대 산호는 대부분 후자의 두 범주입니다. 산호는 해양 환경을 기록하는 중요한 운반체입니다. 고기후학의 결정, 고대 해수면 변화 및 지각 운동 및 기타 연구는 중요한 의미를 갖습니다. 전자 상자성 공명(EPR 또는 ESR)은 짝을 이루지 않은 전자 물질을 연구하기 위한 중요한 도구로, 가변 자기장의 특정 공진 주파수에서 짝을 이루지 않은 전자의 에너지 수준 점프를 측정하여 작동합니다. 현재 산호 분석에서 EPR의 주요 응용 분야는 해양 환경 분석 및 연대 측정입니다. 예를 들어, 산호에서 Mn 2+ 의 EPR 신호는 고기후와 관련이 있습니다. Mn 2+ 의 EPR 신호는 따뜻한 기간 동안 크고 급격한 냉각이 있을 때 급격하게 감소합니다. 산호는 전형적인 해양 탄산염암으로서 자연방사선의 영향을 받아 격자결함을 발생시켜 EPR 신호를 생성하므로 해양 탄산염암의 연대측정 및 절대연대 측정에도 활용될 수 있다. 산호의 EPR 스펙트럼에는 샘플의 격자 및 불순물 결함에 의해 갇힌 짝을 이루지 않은 전자의 농도, 샘플의 광물 및 불순물 구성에 대한 풍부한 정보가 포함되어 있으므로 샘플의 형성 연령 및 결정화 조건에 대한 정보가 포함되어 있습니다. 동시에 획득 가능합니다. 다음으로, 산호의 EPR 신호는 CIQTEK X-Band EPR(ESR) 분광기 EPR100을 사용하여 분석되어 산호의 구성 및 결함 공극에 대한 정보를 제공합니다. CIQTEK X-밴드 EPR100 실험 샘플 샘플은 남중국해의 백산호에서 채취하여 0.1 mol/L 묽은 염산으로 처리하고 막자사발로 분쇄한 후 체로 걸러내고 60°C에서 건조하고 무게는 약 70 mg으로 CIQTEK EPR100에서 테스트했습니다. 화이트 산호 샘플 전자 상자
더보기전도성 페이스트는 신에너지 배터리, 광전지, 전자, 화학 산업, 인쇄, 군사 및 항공 및 기타 분야에서 널리 사용되는 전도성 및 결합 특성을 모두 갖춘 특수 기능성 재료입니다. 전도성 페이스트는 주로 전도성 상, 결합 상 및 유기 캐리어를 포함하며, 전도성 상은 전도성 페이스트의 핵심 재료로, 페이스트의 전기적 특성과 필름 형성 후 기계적 특성을 결정합니다. 일반적으로 사용되는 전도상 재료에는 금속, 금속 산화물, 탄소 재료 및 전도성 고분자 재료 등이 포함됩니다. 전도상 재료의 비표면적, 기공 크기 및 실제 밀도와 같은 물리적 매개 변수가 전도성에 중요한 영향을 미치는 것으로 나타났습니다. 슬러리의 전도성 및 기계적 성질. 따라서 가스 흡착 기술을 기반으로 전도성 상 물질의 비표면적, 기공 크기 분포 및 실제 밀도와 같은 물리적 매개변수를 정확하게 특성화하는 것이 특히 중요합니다. 또한 이러한 매개변수를 정밀하게 조정하면 페이스트의 전도성을 최적화하여 다양한 응용 분야의 요구 사항을 충족할 수 있습니다. 01 전도성 페이스트 도입 다양한 유형의 전도성 페이스트의 실제 적용에 따라 동일하지 않으며 일반적으로 다양한 유형의 전도성 단계에 따라 전도성 페이스트로 나눌 수 있습니다: 무기 전도성 페이스트, 유기 전도성 페이스트 및 복합 전도성 페이스트. 무기 전도성 페이스트는 금속 분말과 비금속 두 종류의 금속 분말(주로 금, 은, 구리, 주석, 알루미늄 등)로 나뉘며, 비금속 전도성 상은 주로 탄소 재료입니다. 전도성 단계의 유기 전도성 페이스트는 주로 전도성 고분자 재료로 밀도가 낮고 내식성이 높으며 필름 형성 특성이 우수하고 특정 전도성 범위에서 조정 가능합니다. 복합 시스템 전도성 페이스트는 현재 전도성 페이스트 연구의 중요한 방향이며, 그 목적은 무기 전도성 페이스트와 유기 전도성 페이스트의 장점을 결합하고 무기 전도성 상과 유기 재료 지지체 유기 조합을 결합하여 두 가지 장점을 최대한 활용하는 것입니다. 전도성 페이스트의 주요 기능상인 전도성 상은 전기 경로를 제공하고 전기적 특성을 달성하기 위해 비표면적, 기공 크기 및 실제 밀도 및 기타 물리적 매개변수가 전도성 특성에 더 큰 영향을 미칩니다. 비표면적 : 비표면적의 크기는 전도성에 영향을 미치는 핵심 요소입니다. 특정 범위 내에서 비표면적이 클수록 더 많은 전자 전도 경로를 제공하여 저항을 줄여 전도성 페이스트의 전도성을 높입니다. 높은 전도성은 전자 장치와 같은 다양한 응용 분야에서 회로의 효율적인 전도를 보장하는 데 중요합니다. 기공 크기 : 기공 크기의 선택은 전자 전도와 이온 확산 모두에 중요한 영향을 미칩니다. 기공 크기가 더 작은 전도성 상은 이온 확산 속도를 감소시킬 수 있으며, 이는 일부 배터리 응용 분야에서 유리할 수 있으며 충전 및 방전 속도를 높일 수 있습니다. 그러나 기공 크기가 너무 작으면 전자 전도가 방해될 수도 있습니다. 따라서 특정 응용 분야 요구 사항에 따라 조리개 크기를 신중하게 선택해야 합니다. 진밀도(True Density) : 진밀도는 전도상의 원자나 분자가 얼마나 가까이 있는지를 반영합니다. 진밀도가 높을수록 일반적으로 구조가 더 조밀해 전자 전도가 용이함을 나타냅니다. 금속 또는 금속 산화물과 같은 더 높은 실제 밀도 재료는 높은 전기 전도성이 필요한 응용 분야에 자주 사용됩니다. 따라서 R&D 과정에서 위의 물리적 매개변수를 정확하게 특성화하여 준비된 전도성 페이스트가 필요한 전자 전도성, 기계적 특성 및 안정성을 갖도록 보장합니다. 다음은 다양한 전도성 단계를 갖는 페이스트의 흡착 특성 특성화에 대한 사례 연구에 대한 자세한 설명입니다. 02 금속 전도성 페이스트 흡착 성능 특성화 금속 전도성 페이스트에는 귀금속인 Au, Ag, Pd, Pt 등과 비귀금속인 Cu, Ni, Al 등이 포함되며, Au 전도성 페이스트는 성능이 우수하지만 일반 용도의 원가를 낮추기 위해 가격이 비싸다. 은 분말의 경우 세라믹 표면의 은은 강한 접착력을 가지며 세라믹 표면에 연속적으로 조밀하고 균일한 얇은 은 전극을 형성할 수 있습니다. 은 전극은 다른 전극 재료보다 커패시턴스가 크지만 은은 전기 작용을 합니다. 전기장은 전자 이동을 생성하여 전도성을 감소시켜 수명에 영향을 미칩니다. 구리분말은 다른 금속계 전도성 페이스트에 비해 가격이 저렴하고 전도성도 우수하지만, 구리가 화학적으로 활성을 갖고 쉽게 산화되어 저항률이 높아지는 단점이 있다. 일반적이고 중요한 전도성 페이스트인 구리 분말 및 은 분말, 소결막 저항성, 접착력 및 치밀화 및 기타 중요한 매개변수는 어느 정도 입자 형태, 분산, 입자 크기 및 비표면적 특성에 따라 달라집니다. Lv Ming 교수는 입자 크기가 작을수록 비표면적이 커지고 따라서 비표면 에너지가 커지고 융점이 낮아져 낮은 소결 온도에서 은 페이스트 내 은나노 분말이 응고되는 데 도움이 된다는 사실을 발견했습니다. 온도에 민감한 특정 시나리오에서 사용할 수 있습니다. CIQTEK의 EASY-V 시리즈 비표면적 시험기를 사용하여 구리분말과 은분말의 비표면적을 측정한 결과 각각 2.71m 2 /g, 1.59m 2 /g이었다(Fig. 1, 2). 0.05 ~ 0.30 범위의 P/P0 선택 지점, 선형 적합도 ≥ 0.999 및 절편은 모두 긍정적이어서 테스트 결과가 정확하고 신뢰할 수 있으며 기기가 고도로 자동화되고 작동이 간단하고 편리하다는 것을 나타냅니다. 그리고 높은 테스트 효율성을 가졌습니다. 작동이 쉽고 편리하며 테스트 효율성이 높습니다. 그림 1 구리분말의 비표면적 시험 결과 그림 2 은분말의 비표면적 시험 결과 03 탄소 기반 전도성 페이스트의 흡착 특성 특성 분석 탄소 전도성 페이스트는 일반적으로 카본블랙, 그래핀, 탄소나노튜브 등이 있으며, 배터리의 핵심 보조재료 중 하나인 배터리 양극재 및 음...
더보기우선, 숙성쌀과 햅쌀이란 무엇일까요? 숙성미, 묵은쌀은 1년 이상 숙성을 위해 보관한 쌀에 불과합니다. 반면, 햅쌀은 새로 수확한 작물로 생산된 쌀입니다. 햅쌀의 신선한 향에 비해 숙성미는 담백하고 맛이 없으며 이는 본질적으로 숙성미의 내부 미세 형태학적 구조의 변화이다. 연구진은 CIQTEK 텅스텐 필라멘트 주사전자현미경 SEM3100을 이용해 햅쌀과 숙성벼를 분석했다. 미세한 세계에서 그것들이 어떻게 다른지 봅시다! CIQTEK 텅스텐 필라멘트 주사 전자 현미경 SEM3100 그림 1 햅쌀과 숙성미의 단면 파쇄 형태 먼저, SEM3100을 이용하여 쌀 배유의 미세구조를 관찰하였다. 도 1로부터 햅쌀의 배유세포는 전분입자를 감싸고 있는 긴 다각형의 기둥 모양의 세포로서 배유의 중심을 동심원으로 하여 방사상 부채꼴 모양으로 배열되어 있는 것을 알 수 있으며, 중앙의 배유 세포는 외부 세포에 비해 더 작았습니다. 햅쌀의 방사형 부채꼴 배유 구조는 숙성 벼보다 더 뚜렷했습니다. 그림 2 햅쌀과 숙성벼의 중앙배유 미세구조 형태 벼의 중앙 배유 조직을 더욱 확대 관찰한 결과, 숙성된 벼의 중앙 부분의 배유 세포가 더 부서지고 전분 과립이 더 많이 노출되어 배유 세포가 방사상으로 배열되어 흐릿한 형태로 나타나는 것으로 나타났습니다. 그림 3 햅쌀과 숙성벼 표면의 단백질막 미세구조 형태 고해상도 이미징이 가능한 SEM3100의 장점을 이용하여 배유세포 표면의 단백질막을 고배율로 관찰하였습니다. 도 3에서 볼 수 있듯이 햅쌀 표면에는 단백질막이 관찰되는 반면, 숙성쌀 표면의 단백질막은 깨져 뒤틀림 정도가 달라 내부 전분과립이 상대적으로 뚜렷하게 노출되어 있음을 알 수 있다. 표면 단백질 필름의 두께가 감소하여 모양이 변형됩니다. 그림 4 햅쌀의 배유 전분 과립의 미세 구조 쌀 배유 세포에는 단일 및 복합 아밀로플라스트가 포함되어 있습니다. 단립 아밀로플라스트는 결정질 다면체로, 종종 무딘 각도와 주변 아밀로플라스트와의 뚜렷한 간격을 갖는 단일 입자 형태로, 주로 직쇄 및 분지쇄 아밀로스에 의해 형성된 결정질 및 무정형 영역을 포함합니다[1,2]. 복잡한 입자의 아밀로플라스트는 모양이 각지고 촘촘하게 배열되어 있으며 주변 아밀로플라스트와 단단히 결합되어 있습니다. 연구에 따르면 고품질 쌀의 전분 알갱이는 주로 복합 알갱이로 존재하는 것으로 나타났습니다[3]. 도 4에 도시된 바와 같이 햅쌀의 배유세포를 관찰한 결과, 전분입자는 대부분 복합입자 형태로 존재하였다.
더보기흔히 사용되는 알약이나 비타민 정제의 표면에 얇은 코팅이 되어 있는 것을 본 적이 있습니까? 스테아린산마그네슘으로 만든 첨가제로 일반적으로 의약품에 윤활제로 첨가됩니다. 그렇다면 왜 이 물질을 의약품에 첨가하는 걸까요? 마그네슘스테아레이트란 무엇입니까? 마그네슘스테아레이트는 널리 사용되는 의약품 부형제입니다. 스테아르산마그네슘(C36H70MgO4)과 팔미트산마그네슘(C32H62MgO4)을 주성분으로 혼합한 백색의 고운 논샌딩 분말로 피부에 닿았을 때 미끄러운 느낌이 듭니다. 마그네슘 스테아레이트는 우수한 접착 방지, 흐름 증가 및 윤활 특성을 지닌 의약품 생산에서 가장 일반적으로 사용되는 윤활제 중 하나입니다. 제약 정제 생산에 스테아르산 마그네슘을 첨가하면 정제와 정제 프레스 다이 사이의 마찰을 효과적으로 줄여 제약 정제 프레스의 정제 힘을 크게 줄이고 약물의 일관성과 품질 관리를 향상시킬 수 있습니다. 마그네슘스테아레이트 인터넷의 이미지 윤활제로서 스테아린산 마그네슘의 주요 특성은 비표면적이며, 비표면적이 클수록 극성이 높아져 접착력이 커지고 혼합 과정에서 입자 표면에 고르게 분포되기가 더 쉬워집니다. 윤활성이 더 좋습니다. CIQTEK 자체 개발한 정적 부피 방법별 표면 및 기공 크기 분석기 V-Sorb X800 시리즈는 스테아르산 마그네슘 및 기타 물질의 가스 흡착을 테스트하고 물질의 BET 표면적을 분석하는 데 사용할 수 있습니다. 이 장비는 작동하기 쉽고 정확하며 고도로 자동화되어 있습니다. 마그네슘 스테아레이트에 대한 비표면적의 영향 연구에 따르면 윤활유 표면 상태, 입자 크기, 표면적 크기, 결정 구조 등 윤활유의 물리적 특성도 의약품에 상당한 영향을 미칠 수 있는 것으로 나타났습니다. 분쇄, 건조 및 저장을 통해 스테아린산 마그네슘은 원래의 물리적 특성을 변경하여 윤활 기능에 영향을 미칠 수 있습니다. 좋은 스테아린산 마그네슘은 낮은 전단 라멜라 구조를 가지고 있으며[1] 약물의 활성 성분 및 기타 부형제와 적절하게 혼합되어 압축된 분말과 주형 벽 사이에 윤활을 제공하고 분말과 주형 사이의 접착을 방지할 수 있습니다. 스테아린산 마그네슘의 비표면적이 클수록 혼합 과정에서 입자 표면에 고르게 분포하기가 더 쉽고 윤활성이 더 좋아집니다. 혼합물과 타정기의 특정 조건에서 스테아르산 마그네슘의 비표면적이 클수록 얻어지는 정제의 인장 강도는 낮아지고 취성은 높아지며 용해 및 붕해는 느려집니다. 따라서 표면적은 의약품 등급 스테아린산마그네슘의 중요한 기술 지표로 간주됩니다. 시중에서 판매되는 스테아르산마그네슘의 비표면적은 3~54m2/g, 일반적으로 5~20m2/g입니다. 다양한 표면적은 조리 방법이 다르기 때문에 발생합니다. 탈기 조건은 스테아르산 마그네슘의 비표면적 값에 영향을 미칠 수 있으며 문헌[2](아래 그림 참조)에서는 탈기 온도가 증가함에 따라 스테아르산 마그네슘의 비표면적이 감소하고 탈기 온도를 높여야 한다고 보고되었습니다. 스테아린산 마그네슘이 소결되거나 용융되는 것을 방지하도록 관리해야 합니다. 공급업체는 종종 비표면적을 하한의 상한의 두 배로 설정합니다(예: 6~12m2/g). 이 범위 내의 변동은 모든 제품에 영향을 미치지 않을 수 있지만 과도한 윤활이 발생하기 쉬운 제품에 영향을 미칠 수 있으므로 비표면적의 정확한 측정이 필수적입니다. 의약품 부형제의 비표면적 시험 적용 사례 CIQTEK 비표면적 및 기공 크기 분석기인 V-Sorb X800 시리즈는 다음과 같이 스테아르산 마그네슘 샘플을 테스트하는 데 사용되었습니다. 마그네슘 스테아레이트 샘플은 시험 전에 탈기되고 가열 및 배기에 의해 전처리되었으며, 전처리 조건은 다음과 같습니다: 60°C 진공 가열 4시간; BET 그래프와 세부 테스트 데이터는 테스트가 완료된 후 다음과 같이 자동으로 생성되었습니다. P/P0는 0.05와 0.35 사이의 5개 지점에서 선택되어 기울기가 0.786537이고 절편이 0.061886인 BET 곡선을 얻었습니다. 실험 결과, 이 마그네슘 스테아레이트의 비표면적은 5.130077m2/g인 것으로 나타났습니다. 미국 약전과 2020년 버전의 중국 약전에서는 특정 표면에 대해 >0.9975의 선형 맞춤을 요구합니다. 그래프에서 볼 수 있듯이 스테아르산 마그네슘에 대한 BET 테스트 결과는 C > 0에서 0.999524의 선형 적합도와 신뢰할 수 있는 BET 테스트 결과를 보여주었습니다. CIQTEK 비표면적 및 기공 크기 분석기 CIQTEK 자동 BET 표면적 및 다공성 측정 분석기 CIQTEK EASY-V 시리즈는 비표면적과 마이크로 및 메소기공 기공 크기 및 분포에 대한 안정적인 테스트를 제공할 수 있습니다. 데이터는 중국 약전의 테스트 요구 사항을 충족하는 것으로 검증되었으며, 원자재 및 보조 재료, 공정 매핑, 정제 품질 및 기타 제약 분야의 연구 및 품질 관리를 위한 신뢰할 수 있는 테스트 수단을 제공합니다. 이 제품은 높은 테스트 효율성, 정확한 결과, 높은 비용 성능, 배우기 쉬운 자동화 작업 등 많은 장점을 가지고 있습니다. CIQTEK 자동 BET 표면적 및 다공도 측정 분석기 CIQTEK EASY-V 시리즈 고객 리뷰 "CIQTEK 완전 자동 비표면적 및 기공 크기 분석기는 안정적인 성능, 매우 높은 병렬성 및 정확도로 잘 사용되고 있으며 장비는 테스트 작업을 위해 완전 자동화되어 있습니다. 장비는 사용 중이며 기술 지원 및 판매 후 문제 빠른 대응이 가능합니다." — 쑨원대학교 지반 공학 및 정보 기술 연구 센터 "자동 비표면 및 기공 크기 분포 시험기는 안정적인 시험 성능, 높은 시험 정확도를 갖추고 있으며 장비 시험 작업이 완전 자동화되어 시험 작업에 큰 편의성을 제공합니다. 수년간 CIQ...
더보기