Products

Products

CIQTEK is the manufacturer and global supplier of high-performance scientific instruments, such as Electron Microscopes, Electron Paramagnetic Resonance (Electron Spin Resonance), Gas Adsorption Analyzers, Scanning NV Microscopes, etc.
더 알아보기
메시지를 남겨주세요
제출하다
응용
금속 파괴 분석용 주사전자현미경
금속 파괴 분석용 주사전자현미경
일반적으로 사용되는 현미경 분석 도구인 주사전자현미경은 모든 유형의 금속 파손, 파손 유형 결정, 형태 분석, 파손 분석 및 기타 연구에서 관찰할 수 있습니다.   금속 골절이란 무엇입니까?   금속이 외력에 의해 부서지면 부서진 부위에 두 개의 일치하는 부분이 남게 되는데, 이를 "파괴"라고 합니다. 이 골절의 모양과 모양에는 골절 과정에 대한 중요한 정보가 많이 포함되어 있습니다.   파단의 형태를 관찰하고 연구함으로써 원인, 성격, 형태, 메커니즘 등을 분석할 수 있으며, 파단 당시의 응력상태와 균열확장률 등의 세부사항도 이해할 수 있다. 골절은 "장면"처럼 골절이 발생하는 전체 과정을 유지합니다. 따라서 금속파괴 문제를 연구하는데 있어서 파단을 관찰하고 분석하는 것은 매우 중요한 단계이자 수단이다. 주사전자현미경은 피사계 심도가 크고 해상도가 높다는 장점이 있어 파괴 분석 분야에서 널리 사용되어 왔습니다.   금속 파괴 분석 에 주사 전자 현미경 을 적용한 연구​​​   금속파괴의 파괴형태는 다양하다. 파단 전의 변형 정도에 따라 분류하면 취성파괴, 연성파괴, 취성파괴와 연성파괴가 혼합된 파단으로 나눌 수 있다. 다양한 골절 형태는 특징적인 미세한 형태를 가지며, 이는 연구자들이 골절 분석을 신속하게 수행하는 데 도움이 되도록 SEM으로 특성화할 수 있습니다.   연성파괴   연성파괴는 부재의 큰 변형 후에 발생하는 파단으로, 주로 상당한 거시소성변형을 특징으로 한다. 거시적 형태는 컵-원추형 골절 또는 순수 전단형 골절이며, 골절 표면은 섬유질이고 단단한 둥지로 구성됩니다. 그림 1에서 볼 수 있듯이 현미경으로 보면 균열의 특징은 다음과 같습니다. 균열 표면은 일반적으로 질긴 포사(tough fossa)라고 불리는 여러 개의 작은 와인잔 모양의 미세 다공성 구덩이로 구성됩니다. 인성와(toughness fossa)는 미세 공극에 의해 생성된 미세 영역 범위의 재료가 핵 생성/성장/응집을 통해 소성 변형되고 최종적으로 서로 연결되어 파괴된 후 파괴 표면에 남는 흔적이다.     그림 1 금속 연성파괴파괴/10kV/Inlens   취성 파괴​   취성파괴란 부재가 큰 변형 없이 파단되는 것을 말한다. 파손 시 재료의 소성 변형이 거의 없습니다. 거시적으로는 결정성이지만, 미시적으로는 결정에 따른 균열, 붕괴 균열 또는 준 붕괴 균열을 포함합니다. 그림 2에서 볼 수 있듯이 금속의 혼합 취성-연성 파괴 파괴는 연성 파괴 영역에서 독특한 인성 둥지 특징을 관찰할 수 있습니다. 취성 파괴 영역에서는 결정 방향 취성 파괴에 속하
5A 분자체의 기공 크기 분포 특성
5A 분자체의 기공 크기 분포 특성
5A 분자체는 CaA형 제올라이트라고도 알려진 입방 격자 구조의 일종의 칼슘형 알루미노규산염입니다. 5A 분자체는 n-이성체화된 알칸의 분리, 산소와 질소의 분리는 물론 천연 가스, 암모니아 분해 가스 및 기타 산업용 가스의 건조에 널리 사용되는 기공 구조와 우수한 선택적 흡착을 개발했습니다. 액체. 5A 분자체는 0.5 nm의 유효 기공 크기를 갖고, 기공 분포의 측정은 일반적으로 물리적 흡착 기구를 사용한 기체 흡착을 특징으로 합니다. 5A 분자체의 유효 기공 크기는 약 0.5 nm이며, 기공 크기 분포는 일반적으로 물리적 흡착 장비를 사용한 가스 흡착을 특징으로 합니다. 5A 분자체의 비표면 및 기공 크기 분포는 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기로 특성화되었습니다. 테스트 전 샘플을 진공 하에서 300 ℃ 에서 6시간 동안 가열하여 탈기시켰다 . 도 1에 도시된 바와 같이, 다점 BET 방정식에 의해 시료의 비표면적은 776.53 m 2 /g 으로 계산되었으며 , 시료의 미세다공면적은 672.04 m 2 /g 으로 얻어졌으며 , 외부 표면은 t-plot 방법으로 측정한 면적은 104.49 m 2 /g , 미세다공체의 부피는 0.254 cm 3 /g 으로 이 분자체의 미세다공 면적이 약 86.5%를 차지하는 것으로 나타났다. 또한, 이 5A 분자체의 N 2 흡착-탈착 등온선 플롯(그림 2, 왼쪽)을 분석한 결과, 흡착 등온선은 상대압력이 0일 때 상대압력이 증가함에 따라 흡착량이 급격하게 증가함을 보여준다. 작고, 미세기공이 채워지는 현상이 발생하고, 특정 값에 도달한 후 곡선이 상대적으로 평평해지며, 이는 시료에 미세기공이 풍부하다는 것을 의미합니다. SF 모델(그림 2, 오른쪽 패널)을 사용한 미세 다공성 기공 크기 분포 계산은 0.48 nm에서 집중된 미세 다공성 기공 크기 분포를 산출했으며 이는 5A 분자체의 기공 크기와 일치합니다.   그림 1 5A Molecular Sieve의 비표면적 테스트 결과(왼쪽)와 t-Plot 결과(오른쪽)   그림 2 5A 분자체 샘플의 N 2 - 흡착 및 탈착 등온선(왼쪽)과 SF-기공 크기 분포 플롯(오른쪽)      CIQTEK 자동 BET 표면적 및 다공성 측정 분석기 | EASY-V 3440 EASY-V 3440은 CIQTEK이 독자적으로 개발한 정체적법(Static Volumetric Method)을 이용하여 BET 비표면적 및 기공크기 분석 장비입니다 .   ▪ 비표면적 테스트, 범위 0.0005(m 2 /g) 이상. ▪ 기공 크기 분석: 0.35 nm-2 nm(미세 기공), 미세 기공 크기 분포 분석; 2nm~500nm(중공극 또는 거대공극). ▪ 4개의 분석 스테이션, 4개의 샘플을 동시에 테스트합니다. ▪ 분자펌프가 장착되어 있습니다.
ZIF 분자체의 비표면적 및 기공 크기 분포 특성 분석
ZIF 분자체의 비표면적 및 기공 크기 분포 특성 분석
금속-유기 골격(MOF)의 하위 클래스인 제올라이트 이미다졸륨 골격(ZIF) 재료인 ZIF 재료는 무기 제올라이트의 높은 안정성과 MOF 재료의 높은 비표면적, 높은 다공성 및 조정 가능한 기공 크기를 결합하여 다음 분야에 적용할 수 있습니다. 효율적인 촉매 및 분리 공정을 통해 ZIF 및 그 파생물은 촉매 작용, 흡착 및 분리, 전기 화학, 바이오 센서 및 생물 의학 및 응용 전망이 좋은 기타 분야에서 사용할 수 있는 좋은 잠재력을 가지고 있습니다. 다음은 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기 를 사용하여 ZIF 분자체의 특성화에 대한 사례 연구입니다 . 왼쪽 그림 3에 표시된 것처럼 이 ZIF 분자체의 비표면적은 857.63m 2 /g입니다. 이 물질은 비표면적이 커서 반응성 물질의 확산에 유리합니다. N 2 -흡착 및 탈착 등온선(그림 3, 오른쪽)으로부터 낮은 분압 영역(P/P 0 < 0.1) 에서 흡착이 급격히 증가하는 것을 볼 수 있으며 이는 충전에 기인합니다. 이는 물질에 일정량의 미세다공성 구조가 있음을 나타내며 P/P 0 약 0.40 ~ 0.99 범위 내에 히스테리시스 루프가 있어 이 ZIF에 메조다공성 구조가 풍부함을 나타냅니다. 분자체. SF 기공 크기 분포 그래프(그림 4, 왼쪽)는 이 샘플에서 가장 이용 가능한 기공 크기가 0.56 nm임을 보여줍니다. 이 ZIF 분자체의 총 기공 부피는 0.97 cm 3 /g, 미세 다공성 부피는 0.64 cm 3 /g으로 미세 기공이 66%이고, 미세 다공성 구조는 시료의 비표면적을 크게 증가시킬 수 있지만, 분자체는 더 작은 기공 크기로 인해 특정 조건에서 촉매 활성을 제한합니다. 그러나 특정 조건에서는 기공 크기가 작을수록 촉매 반응의 확산 속도가 제한되어 분자체 촉매의 성능이 제한되지만 메조 다공성 구조가 미세 다공성 구조의 이러한 결함을 분명히 보완할 수 있으므로 구조는 미세다공성과 메조기공의 결합은 단일 기공을 갖는 전통적인 분자체의 물질 전달 능력의 한계 문제를 효과적으로 해결할 수 있습니다.     그림 1 ZIF 분자체에 대한 비표면적 테스트 결과(왼쪽)와 N 2 -흡착 및 탈착 등온선(오른쪽) 그림 2 ZIF 분자체의 SF-기공 크기 분포(왼쪽)와 NLDFT-기공 크기 분포(오른쪽)
Application of Scanning Electron Microscopy in Electrolytic Copper Foils
Application of Scanning Electron Microscopy in Electrolytic Copper Foils
The characterization of copper foil morphology by scanning electron microscopy can help researchers and developers to optimize and improve the preparation process and performance of copper foils to further meet the existing and future quality requirements of high-performance lithium-ion batteries. Wide Range of Copper Applications Copper metal is widely used in lithium-ion batteries and printed circuit boards because of its ductility, high conductivity, ease of processing and low price. Depending on the production process, copper foil can be categorized into calendered copper foil and electrolytic copper foil. Calendered copper foil is made of copper blocks rolled repeatedly, with high purity, low roughness and high mechanical properties, but at a higher cost. Electrolytic copper foil, on the other hand, has the advantage of low cost and is the mainstream copper foil product in the market at present. The specific process of electrolytic copper foil is (1) dissolving copper: dissolve raw copper to form sulfuric acid-copper sulfate electrolyte, and remove impurities through multiple filtration to improve the purity of the electrolyte. (2) Raw foil preparation: usually polished pure titanium rolls as the cathode, through electrodeposition of copper ions in the electrolyte is reduced to the surface of the cathode to form a certain thickness of copper layer. (3) Surface treatment: the raw foil is peeled off from the cathode roll, and then after post-treatment, the finished electrolytic copper foil can be obtained. Figure 1 Electrolytic Copper Foil Production Process Copper Metal in Lithium-ion Batteries Lithium-ion batteries are mainly composed of active materials (cathode material, anode material), diaphragm, electrolyte and conductive collector. Positive potential is high, copper is easy to be oxidized at higher potentials, so copper foil is often used as the anode collector of lithium-ion batteries. The tensile strength, elongation and other properties of copper foil directly affect the performance of lithium-ion batteries. At present, lithium-ion batteries are mainly developed towards the trend of "light and thin", so the performance of electrolytic copper foil also puts forward higher requirements such as ultra-thin, high tensile strength and high elongation. How to effectively improve the electrolytic copper foil process to enhance the mechanical properties of copper foil is the main research direction of copper foil in the future. Suitable additive formulation in the foil making process is the most effective means to regulate the performance of electrolytic copper foil, and qualitative and quantitative research on the effect of additives on the surface morphology and physical properties of electrolytic copper foil has been a research hotspot for scholars at home and abroad. In materials science, the microstructure determines its mechanical properties, and the use of scanning electron microscopy to characterize the changes in the surface micro-m...
환경 오염 물질 검출 - EPR(ESR) 애플리케이션
환경 오염 물질 검출 - EPR(ESR) 애플리케이션
환경오염은 지구적 위기의 하나로 인간의 생명과 건강에 영향을 미치고 있습니다. 공기, 물, 토양 오염물질 중에는 새로운 종류의 환경적으로 유해한 물질인 EPFR(환경 지속성 자유 라디칼)이 있습니다. EPFR은 환경 어디에나 존재하며 세포 및 신체 손상을 유발하고 암의 원인 중 하나이며 강력한 생물학적 위험 효과를 갖는 반응성 산화물 종(ROS)의 생성을 유도할 수 있습니다. 전자 상자성 공명(EPR 또는 ESR) 기술은 EPFR을 감지하고 정량화하여 위험의 원인을 찾고 근본적인 문제를 해결할 수 있습니다.     EPFR이란 무엇입니까?   EPFR은 수명이 짧은 자유 라디칼에 대한 전통적인 우려와 관련하여 제안된 새로운 종류의 환경 위험 물질입니다. 그들은 수십 분에서 수십 일 동안 환경에 존재할 수 있고 수명이 길며 안정적이고 지속적입니다. 안정성은 구조적 안정성에 바탕을 두고 있어 쉽게 분해되지 않으며, 서로 반응하여 터지기 어렵습니다. 지속성은 환경 중의 다른 물질과 쉽게 반응하지 않아 환경에서 지속될 수 있다는 불활성에 기초합니다. 일반적인 EPFR은 사이클로펜타디에닐, 세미퀴논, 페녹시 및 기타 라디칼입니다.   일반적인 EPFR     EPFR은 어디에서 오는가?   EPFR은 대기 미립자 물질(예: PM 2.5), 공장 배출물, 담배, 석유 코크스, 목재 및 플라스틱, 석탄 연소 미립자, 수역의 용해성 분획, 유기적으로 오염된 토양 등과 같은 광범위한 환경 매체에서 발견됩니다. EPFR은 환경 매체에서 광범위한 운송 경로를 가지고 있으며 수직 상승, 수평 운송, 수역으로의 수직 퇴적, 육지로의 수직 퇴적 및 수역의 육지 이동을 통해 운송될 수 있습니다. 이동 과정에서 새로운 반응성 라디칼이 생성될 수 있으며, 이는 환경에 직접 영향을 미치고 자연 오염원의 원인이 됩니다.   EPFR의 형성 및 멀티미디어 전송 (Environmental Pollution 248 (2019) 320-331)     EPFR 검출을 위한 EPR 기술 적용   EPR(ESR)은 짝을 이루지 않은 전자를 포함하는 물질을 직접 검출하고 연구할 수 있는 유일한 파동분광법 기술로, 높은 감도와 실시간 현장 모니터링 등의 장점으로 인해 EPFR 검출에 중요한 역할을 합니다. EPFR 검출을 위해 EPR(ESR) 분광학은 공간적 차원과 시간적 차원 모두에서 정보를 제공합니다. 공간적 차원은 자유 라디칼의 존재를 증명하고 분자 구조 등에 대한 정보를 얻을 수 있는 EPR 스펙트럼을 의미합니다. EPR 테스트를 통해 샘플 내 자유 라디칼과 같은 종을 분석할 수 있으며 연속파 EPR 스펙트럼은 다음과 같은 정보를 제공할 수 있습니다. g-인자 및 초미세 결합 상수 A로, 이를 통해 연구자들은 자유 라디칼의 전자 구조와 같은 정보를 얻을 수 있습니다. 시간 차원은 EPR 신호의 현재 시간을 모니터링하여 EPFR의 반감기를 추론할 수 있음을 의미합니다.   토양 환경에서 EPFR 검출에 EPR 기술 적용   석유 처리, 저장, 운송 및 저장 탱크에서의 누출 가능성은 모두 토양 오염에 취약합니다. 다양한 휘발성, 반휘발성, 살충제 및 PCB로 오염된 토양을 복원하기 위해 열처리 기술을 사용할 수 있지만 가열은 토양의 물리화학적 특성을 변화시킬 수 있습니다. 토양 내 PCP 및 EPFR에 대한 저온 열처리 효과는 EPR 기술을 사용하여 연구할 수 있습니다.   닫힌 가열(무산소 조건)과 개방형 가열(산소가 풍부한 조건)의 두 가지 가열 유형을 사용하여 토양을 열처리하고 EPR(ESR)에 대해 테스트했습니다. 테스트 결과는 개방형 토양에서 약간 더 넓고 약한 EPR(ESR) 라디칼 신호를 보여 주었으며, 이는 개방형 가열로 인해 산소 중심 구조를 가진 PCP 라디칼 또는 기타 유사한 라디칼이 형성되었음을 나타냅니다. 가장 높은 EPFR 농도는 100°C의 개방 가열에서 10 x 1018 spin/g이었고, 75°C의 폐쇄 가열에서는 12 x 1018 spin/g이었습니다. 결과는 PCP로 오염된 토양의 저온 처리가 PCP를 충분히 오랜 시간 동안 환경에 존재할 수 있는 더 독성이 강한 EPFR로 전환할 수 있음을 시사합니다.   폐쇄형 및 개방형 토양의 EPR 스펙트럼과 EPFR 및 PCP의 해당 농도(Environ Sci Technol, 2012, 46(11): 5971-5978)   담배 연기 내 EPFR 검출을 위한 EPR 기술 적용   담배 연기는 입자/물방울(TPM, 총 미립자 물질)과 기체상 화학 물질(독성 가스, 휘발성 유기 화합물, 단명성 라디칼 등)로 구성된 에어로졸입니다. TPM에는 고농도의 장수명 EPFR, 안정적인 라디칼이 포함되어 있습니다. 수산기 라디칼(-OH)의 형성을 통해 DNA 손상을 유발하여 인간 건강에 장기적으로 부정적인 영향을 미치는 원인입니다. 기존 담배의 경우 탄소 중심의 자유 라디칼이 존재하므로 EPR 기술로 검출할 수 있습니다. 최신 전자 담배의 경우 EPR 기술을 사용하면 전자 담배를 흡입하는 동안 생성된 자유 라디칼을 측정하고 TPM에서 각각 EPFR 생성 및 ROS 생성을 정량화할 수 있습니다.   전자담배 TMP에서 생성되는 하이드록실라디칼의 양 (환경과학과 기술 2020 54(9), 5710-5718)   석탄 채굴 지역의 EPFR 검출에 EPR 기술 적용   중국 윈난성 쉬안웨이(Xuanwei)는 폐암 발병률이 높은 지역이다. 이 지역은 유연탄 매장량이 풍부하고 주민들은 일상생활과 산업 생산에 유연탄을 사용하고 있습니다. 역청탄이 연소되면 폐암 발생률이 높은 주요 원인으로 꼽히는 다환방향족탄화수소(PAH) 등 물질을 함유한 오염물질이 발생한다. 다환방향족탄화수소(PAH)는 환경에 가장 널리 분포된 잠재적 발암성 및 기형 유발 화학 오염물질입니다. 분자 자체는 상자성이 아니지만 실리카-알루미늄 촉매의 작용으로 해당 양이온 라디칼로 쉽게 산화됩니다. 촉매 표면에 흡착...
맨 위

메시지를 남겨주세요

메시지를 남겨주세요
자세한 내용을 알아보려면 언제든지 문의하거나 견적을 요청하거나 온라인 데모를 예약하세요! 최대한 빨리 답변해 드리겠습니다.
제출하다

제품

채팅

연락하다