Products

Products

CIQTEK is the manufacturer and global supplier of high-value scientific instruments, such as Scanning Electron Microscopes (SEMs), Electron Paramagnetic Resonance (Electron Spin Resonance) Spectroscopy, Scanning NV Microscopes, Gas Adsorption Analyzers, e
더 알아보기
메시지를 남겨주세요
제출하다
응용
도마뱀 피부의 전계 방출 주사 전자 현미경(FESEM): 도마뱀 피부의 색 메커니즘에 대한 연구
도마뱀 피부의 전계 방출 주사 전자 현미경(FESEM): 도마뱀 피부의 색 메커니즘에 대한 연구
본 논문에 사용된 도마뱀 피부 세포는 중국과학원 쿤밍동물학연구소 Che Jing 연구그룹에서 제공한 것입니다. 1. 배경 도마뱀은 다양한 체형과 다양한 환경을 가지고 지구상에 사는 파충류 그룹입니다. 도마뱀은 적응력이 뛰어나 다양한 환경에서 생존할 수 있습니다. 이 도마뱀 중 일부는 보호 또는 구애 행동을 위해 다채로운 색상을 띠기도 합니다. 도마뱀 피부 착색의 발달은 매우 복잡한 생물학적 진화 현상입니다. 이 능력은 많은 도마뱀에서 널리 발견됩니다. 그런데 정확히 어떻게 발생합니까? 이 기사에서는 CIQTEK 전계 방출 주사 전자 현미경 제품 과 함께 도마뱀 변색 메커니즘을 이해하도록 안내합니다 . 2. CIQTEK 전계방출 주사전자현미경 고급 과학 장비인  주사전자현미경은 고해상도와 광범위한 배율이라는 장점으로 인해 과학 연구 과정에서 필요한 특성화 도구가 되었습니다. 시료 표면에 대한 정보를 얻는 것 외에도 SEM에 주사 투과 검출기 액세서리를 사용하여 투과 모드(STEM)를 적용하여 재료의 내부 구조를 얻을 수 있습니다. 또한 기존 투과 전자 현미경과 비교하여 SEM의 STEM 모드는 낮은 가속 전압으로 인해 샘플의 전자빔 손상을 크게 줄이고 이미지 라이닝을 크게 향상시킬 수 있습니다. 이는 특히 소프트의 구조 분석에 적합합니다. 폴리머 및 생물학적 시료와 같은 재료 시료. CIQTEK SEM에는 이 스캐닝 모드가 장착될 수 있으며, 그 중 인기 있는 CIQTEK 전계 방출 모델인 SEM5000은 고전압 터널링 기술(SuperTunnel), 저수차 비누설 대물렌즈 설계를 포함한 고급 배럴 설계를 채택하고 다양한 기능을 갖추고 있습니다. 이미징 모드: INLENS, ETD, BSED, STEM 등. STEM 모드의 해상도는 최대 0.8nm@30kv입니다. 자연에서 동물의 몸 색깔은 형성 메커니즘에 따라 색소색과 구조색의 두 가지 범주로 나눌 수 있습니다. 유색은 안료 성분의 함량 변화와 색상의 중첩을 통해 생성되며 "삼원색"의 원리와 유사합니다. 반면 구조색은 빛을 미세한 생리적 구조를 통해 반사시켜 반사된 빛의 파장이 다른 색을 만들어내는 광학 원리에 기초한 것이다. 다음 그림(그림 1-4)은 SEM5000-STEM 액세서리를 사용하여 도마뱀 피부 세포의 무지개 빛깔의 세포를 특성화한 결과를 보여줍니다. 회절 격자와 유사한 구조를 가지고 있으며 이를 잠정적으로 결정 시트라고 부르겠습니다. 다양한 파장의 빛을 반사하고 산란시킬 수 있습니다. 도마뱀 피부에 의해 산란되고 반사되는 빛의 파장은 결정 시트의 크기, 간격, 각도를 변경함으로써 변경될 수 있다는 것이 밝혀졌으며 이는 도마뱀 피부 변색
금속 파괴 분석용 주사전자현미경
금속 파괴 분석용 주사전자현미경
일반적으로 사용되는 현미경 분석 도구인 주사전자현미경은 모든 유형의 금속 파손, 파손 유형 결정, 형태 분석, 파손 분석 및 기타 연구에서 관찰할 수 있습니다.   금속 골절이란 무엇입니까?   금속이 외력에 의해 부서지면 부서진 부위에 두 개의 일치하는 부분이 남게 되는데, 이를 "파괴"라고 합니다. 이 골절의 모양과 모양에는 골절 과정에 대한 중요한 정보가 많이 포함되어 있습니다.   파단의 형태를 관찰하고 연구함으로써 원인, 성격, 형태, 메커니즘 등을 분석할 수 있으며, 파단 당시의 응력상태와 균열확장률 등의 세부사항도 이해할 수 있다. 골절은 "장면"처럼 골절이 발생하는 전체 과정을 유지합니다. 따라서 금속파괴 문제를 연구하는데 있어서 파단을 관찰하고 분석하는 것은 매우 중요한 단계이자 수단이다. 주사전자현미경은 피사계 심도가 크고 해상도가 높다는 장점이 있어 파괴 분석 분야에서 널리 사용되어 왔습니다.   금속 파괴 분석 에 주사 전자 현미경 을 적용한 연구​​​   금속파괴의 파괴형태는 다양하다. 파단 전의 변형 정도에 따라 분류하면 취성파괴, 연성파괴, 취성파괴와 연성파괴가 혼합된 파단으로 나눌 수 있다. 다양한 골절 형태는 특징적인 미세한 형태를 가지며, 이는 연구자들이 골절 분석을 신속하게 수행하는 데 도움이 되도록 SEM으로 특성화할 수 있습니다.   연성파괴   연성파괴는 부재의 큰 변형 후에 발생하는 파단으로, 주로 상당한 거시소성변형을 특징으로 한다. 거시적 형태는 컵-원추형 골절 또는 순수 전단형 골절이며, 골절 표면은 섬유질이고 단단한 둥지로 구성됩니다. 그림 1에서 볼 수 있듯이 현미경으로 보면 균열의 특징은 다음과 같습니다. 균열 표면은 일반적으로 질긴 포사(tough fossa)라고 불리는 여러 개의 작은 와인잔 모양의 미세 다공성 구덩이로 구성됩니다. 인성와(toughness fossa)는 미세 공극에 의해 생성된 미세 영역 범위의 재료가 핵 생성/성장/응집을 통해 소성 변형되고 최종적으로 서로 연결되어 파괴된 후 파괴 표면에 남는 흔적이다.     그림 1 금속 연성파괴파괴/10kV/Inlens   취성 파괴​   취성파괴란 부재가 큰 변형 없이 파단되는 것을 말한다. 파손 시 재료의 소성 변형이 거의 없습니다. 거시적으로는 결정성이지만, 미시적으로는 결정에 따른 균열, 붕괴 균열 또는 준 붕괴 균열을 포함합니다. 그림 2에서 볼 수 있듯이 금속의 혼합 취성-연성 파괴 파괴는 연성 파괴 영역에서 독특한 인성 둥지 특징을 관찰할 수 있습니다. 취성 파괴 영역에서는 결정 방향 취성 파괴에 속하
5A 분자체의 기공 크기 분포 특성
5A 분자체의 기공 크기 분포 특성
5A 분자체는 CaA형 제올라이트라고도 알려진 입방 격자 구조의 일종의 칼슘형 알루미노규산염입니다. 5A 분자체는 n-이성체화된 알칸의 분리, 산소와 질소의 분리는 물론 천연 가스, 암모니아 분해 가스 및 기타 산업용 가스의 건조에 널리 사용되는 기공 구조와 우수한 선택적 흡착을 개발했습니다. 액체. 5A 분자체는 0.5 nm의 유효 기공 크기를 갖고, 기공 분포의 측정은 일반적으로 물리적 흡착 기구를 사용한 기체 흡착을 특징으로 합니다. 5A 분자체의 유효 기공 크기는 약 0.5 nm이며, 기공 크기 분포는 일반적으로 물리적 흡착 장비를 사용한 가스 흡착을 특징으로 합니다. 5A 분자체의 비표면 및 기공 크기 분포는 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기로 특성화되었습니다. 테스트 전 샘플을 진공 하에서 300 ℃ 에서 6시간 동안 가열하여 탈기시켰다 . 도 1에 도시된 바와 같이, 다점 BET 방정식에 의해 시료의 비표면적은 776.53 m 2 /g 으로 계산되었으며 , 시료의 미세다공면적은 672.04 m 2 /g 으로 얻어졌으며 , 외부 표면은 t-plot 방법으로 측정한 면적은 104.49 m 2 /g , 미세다공체의 부피는 0.254 cm 3 /g 으로 이 분자체의 미세다공 면적이 약 86.5%를 차지하는 것으로 나타났다. 또한, 이 5A 분자체의 N 2 흡착-탈착 등온선 플롯(그림 2, 왼쪽)을 분석한 결과, 흡착 등온선은 상대압력이 0일 때 상대압력이 증가함에 따라 흡착량이 급격하게 증가함을 보여준다. 작고, 미세기공이 채워지는 현상이 발생하고, 특정 값에 도달한 후 곡선이 상대적으로 평평해지며, 이는 시료에 미세기공이 풍부하다는 것을 의미합니다. SF 모델(그림 2, 오른쪽 패널)을 사용한 미세 다공성 기공 크기 분포 계산은 0.48 nm에서 집중된 미세 다공성 기공 크기 분포를 산출했으며 이는 5A 분자체의 기공 크기와 일치합니다.   그림 1 5A Molecular Sieve의 비표면적 테스트 결과(왼쪽)와 t-Plot 결과(오른쪽)   그림 2 5A 분자체 샘플의 N 2 - 흡착 및 탈착 등온선(왼쪽)과 SF-기공 크기 분포 플롯(오른쪽)      CIQTEK 자동 BET 표면적 및 다공성 측정 분석기 | EASY-V 3440 EASY-V 3440은 CIQTEK이 독자적으로 개발한 정체적법(Static Volumetric Method)을 이용하여 BET 비표면적 및 기공크기 분석 장비입니다 .   ▪ 비표면적 테스트, 범위 0.0005(m 2 /g) 이상. ▪ 기공 크기 분석: 0.35 nm-2 nm(미세 기공), 미세 기공 크기 분포 분석; 2nm~500nm(중공극 또는 거대공극). ▪ 4개의 분석 스테이션, 4개의 샘플을 동시에 테스트합니다. ▪ 분자펌프가 장착되어 있습니다.
ZIF 분자체의 비표면적 및 기공 크기 분포 특성 분석
ZIF 분자체의 비표면적 및 기공 크기 분포 특성 분석
금속-유기 골격(MOF)의 하위 클래스인 제올라이트 이미다졸륨 골격(ZIF) 재료인 ZIF 재료는 무기 제올라이트의 높은 안정성과 MOF 재료의 높은 비표면적, 높은 다공성 및 조정 가능한 기공 크기를 결합하여 다음 분야에 적용할 수 있습니다. 효율적인 촉매 및 분리 공정을 통해 ZIF 및 그 파생물은 촉매 작용, 흡착 및 분리, 전기 화학, 바이오 센서 및 생물 의학 및 응용 전망이 좋은 기타 분야에서 사용할 수 있는 좋은 잠재력을 가지고 있습니다. 다음은 CIQTEK EASY- V 시리즈 비표면 및 기공 크기 분석기 를 사용하여 ZIF 분자체의 특성화에 대한 사례 연구입니다 . 왼쪽 그림 3에 표시된 것처럼 이 ZIF 분자체의 비표면적은 857.63m 2 /g입니다. 이 물질은 비표면적이 커서 반응성 물질의 확산에 유리합니다. N 2 -흡착 및 탈착 등온선(그림 3, 오른쪽)으로부터 낮은 분압 영역(P/P 0 < 0.1) 에서 흡착이 급격히 증가하는 것을 볼 수 있으며 이는 충전에 기인합니다. 이는 물질에 일정량의 미세다공성 구조가 있음을 나타내며 P/P 0 약 0.40 ~ 0.99 범위 내에 히스테리시스 루프가 있어 이 ZIF에 메조다공성 구조가 풍부함을 나타냅니다. 분자체. SF 기공 크기 분포 그래프(그림 4, 왼쪽)는 이 샘플에서 가장 이용 가능한 기공 크기가 0.56 nm임을 보여줍니다. 이 ZIF 분자체의 총 기공 부피는 0.97 cm 3 /g, 미세 다공성 부피는 0.64 cm 3 /g으로 미세 기공이 66%이고, 미세 다공성 구조는 시료의 비표면적을 크게 증가시킬 수 있지만, 분자체는 더 작은 기공 크기로 인해 특정 조건에서 촉매 활성을 제한합니다. 그러나 특정 조건에서는 기공 크기가 작을수록 촉매 반응의 확산 속도가 제한되어 분자체 촉매의 성능이 제한되지만 메조 다공성 구조가 미세 다공성 구조의 이러한 결함을 분명히 보완할 수 있으므로 구조는 미세다공성과 메조기공의 결합은 단일 기공을 갖는 전통적인 분자체의 물질 전달 능력의 한계 문제를 효과적으로 해결할 수 있습니다.     그림 1 ZIF 분자체에 대한 비표면적 테스트 결과(왼쪽)와 N 2 -흡착 및 탈착 등온선(오른쪽) 그림 2 ZIF 분자체의 SF-기공 크기 분포(왼쪽)와 NLDFT-기공 크기 분포(오른쪽)
전해 동박에 주사전자현미경을 적용하는 방법
전해 동박에 주사전자현미경을 적용하는 방법
주사전자현미경을 통한 구리박 형태의 특성화는 연구원과 개발자가 구리박의 준비 공정과 성능을 최적화하고 개선하여 고성능 리튬 이온 배터리의 기존 및 미래 품질 요구 사항을 더욱 충족시키는 데 도움이 될 수 있습니다. 광범위한 구리 응용 분야 구리 금속은 연성, 높은 전도성, 가공 용이성 및 저렴한 가격으로 인해 리튬 이온 배터리 및 인쇄 회로 기판에 널리 사용됩니다. 동박은 생산 공정에 따라 캘린더 동박과 전해 동박으로 분류됩니다. 캘린더링된 구리 호일은 순도가 높고 거칠기가 낮으며 기계적 특성이 높지만 비용이 더 많이 드는 구리 블록을 반복적으로 압연하여 만들어집니다. 반면 전해동박은 가격이 저렴하다는 장점이 있어 현재 시장의 주류 동박제품이다. 전해 동박의 구체적인 공정은 (1) 구리를 용해시키는 것입니다. 원료 구리를 용해시켜 황산-황산구리 전해질을 형성하고, 다중 여과를 통해 불순물을 제거하여 전해질의 순도를 향상시키는 것입니다. (2) 원박 준비 : 일반적으로 연마 된 순수 티타늄 롤을 음극으로 사용하여 전해질의 구리 이온을 음극 표면으로 환원시켜 특정 두께의 구리 층을 형성합니다. (3) 표면처리 : 음극롤에서 원료박을 박리한 후 후처리를 거쳐 완성된 전해동박을 얻을 수 있다. 그림 1 전해동박 생산공정 리튬 이온 배터리의 구리 금속 리튬이온전지는 주로 활물질(양극재, 음극재), 격막, 전해질, 전도성 집전체로 구성된다. 양극 전위가 높고 구리는 더 높은 전위에서 산화되기 쉽기 때문에 구리 호일은 리튬 이온 배터리의 양극 집전체로 자주 사용됩니다. 구리박의 인장 강도, 신장률 및 기타 특성은 리튬 이온 배터리의 성능에 직접적인 영향을 미칩니다. 현재 리튬 이온 배터리는 주로 '가벼움과 박형' 추세를 향해 개발되고 있으므로 전해 동박의 성능도 초박형, 높은 인장 강도, 높은 연신율 등 더 높은 요구 사항을 제시합니다. 동박의 기계적 성질을 향상시키기 위해 전해 동박 공정을 효과적으로 개선하는 방법이 향후 동박의 주요 연구 방향이다. 호일 제조 공정에서 적절한 첨가제 배합은 전해 동박의 성능을 조절하는 가장 효과적인 수단이며, 전해 동박의 표면 형태 및 물리적 특성에 대한 첨가제의 영향에 대한 정성적, 정량적 연구는 학자들에게 연구 핫스팟이었습니다. 국내외에서. 재료 과학에서 미세 구조는 기계적 특성을 결정하며, 주사 전자 현미경을 사용하여 표면 미세 형태 및 미세 구조의 변화를 특성화하면 연구자가 미세 구조와 기계적 특성 간의 관계를 확립하는 데 도움이 될 수 있습
맨 위

메시지를 남겨주세요

메시지를 남겨주세요
자세한 내용을 알아보려면 언제든지 문의하거나 견적을 요청하거나 온라인 데모를 예약하세요! 최대한 빨리 답변해 드리겠습니다.
제출하다

제품

채팅

연락하다