MOF 특성화에 대해 알고 싶은 모든 것
최근, 2025년 노벨 화학상은 "금속-유기 골격(MOF) 개발" 공로를 인정받아 기타가와 스스무, 리처드 롭슨, 오마르 야기에게 수여되었습니다. 세 명의 수상자는 거대한 내부 공간을 가진 분자 구조를 만들어 기체와 기타 화학 물질이 그 사이를 흐를 수 있도록 했습니다. 금속-유기 골격체(MOF)로 알려진 이 구조는 사막 공기에서 물을 추출하고 이산화탄소를 포집하는 것부터 유독 가스를 저장하고 화학 반응을 촉진하는 것까지 다양한 용도로 활용될 수 있습니다. 금속-유기 골격체(MOF)는 유기 리간드를 통해 연결된 금속 이온 또는 클러스터로 형성된 결정질 다공성 물질의 한 종류입니다(그림 1). MOF의 구조는 무기 물질의 안정성과 유기 화학의 설계 유연성을 결합한 "금속 노드 + 유기 연결체"의 3차원 네트워크로 구상될 수 있습니다. 이러한 다재다능한 구조 덕분에 MOF는 주기율표의 거의 모든 금속과 카르복실레이트, 이미다졸레이트, 포스포네이트와 같은 다양한 리간드로 구성될 수 있으며, 이를 통해 기공 크기, 극성 및 화학적 환경을 정밀하게 제어할 수 있습니다. 그림 1. 금속-유기 골격의 개략도 1990년대에 최초의 영구 다공성 MOF가 등장한 이후, HKUST-1과 MIL-101과 같은 고전적인 사례를 포함하여 수천 개의 구조적 프레임워크가 개발되었습니다. 이러한 구조적 프레임워크는 매우 높은 비표면적과 기공 부피를 나타내어 기체 흡착, 수소 저장, 분리, 촉매 작용, 심지어 약물 전달에 이르기까지 고유한 특성을 제공합니다. 일부 유연한 MOF는 흡착이나 온도에 따라 가역적인 구조 변화를 겪을 수 있으며, "호흡 효과"와 같은 동적 거동을 보입니다. 다양성, 조정 가능성, 그리고 기능화 덕분에 MOF는 다공성 재료 연구의 핵심 주제가 되었으며, 흡착 성능 및 특성 분석 방법을 연구하는 데 탄탄한 과학적 기반을 제공합니다. MOF 특성화 MOF의 기본적인 특성 분석에는 일반적으로 결정성과 상 순도를 확인하기 위한 분말 X선 회절(PXRD) 패턴과 기공 구조를 검증하고 겉보기 표면적을 계산하기 위한 질소(N₂) 흡착/탈착 등온선이 포함됩니다. 일반적으로 사용되는 다른 보완 기술은 다음과 같습니다. 열중량 분석(TGA) : 열 안정성을 평가하고 어떤 경우에는 기공 부피를 추정할 수 있습니다. 물 안정성 시험 : 물과 다양한 pH 조건에서 구조적 안정성을 평가합니다. 주사전자현미경(SEM) : 결정 크기와 형태를 측정하고, 에너지 분산형 X선 분광법(EDS)과 결합하여 원소 구성과 분포를 파악할 수 있습니다. 핵자기공명(NMR) 분광법 : 전반적인 샘플 순도를 분석하고 혼합 리간드 MOF의 리간드 비율을 정량화할 수 있습니다. 유도 결합 플라즈마 광 방출 분광법(ICP-OES) : 샘플 순도와 원소 비율을 결정합니다. 확산 반사 적외선 푸리에 변환 분광법(DRIFTS) : 프레임워크 내 IR 활성 작용기의 존재 또는 부재를 확인합니다. 단결정 X선 회절(SCXRD) : 정확한 구조 정보를 제공합니다. 각 특성 분석 방법에 대한 샘플 준비와 주요 데이터 분석 지점에 대한 간략한 개요는 다음과 같습니다. 1. 분말 X선 회절(PXRD) PXRD는 결정 구조와 상 순도를 측정합니다. 실험적 회절 패턴을 단결정 XRD 데이터에서 얻은 시뮬레이션 패턴과 비교하여 상 순도를 확인합니다. 시료는 일반적으로 분말을 펠릿 형태로 압축하거나 모세관에 주입하여 측정하며, 우선 배향 효과를 피하기 위해 측정 중 회전을 적용합니다. 피크 폭이 넓어지는 것은 일반적으로 결정성이 좋지 않다는 것이 아니라 결정립 크기가 작음을 나타냅니다. 2. 질소 흡착/탈착 등온선 77K에서 측정된 N₂ 흡착/탈착 등온선은 기공 구조를 확인하고, 표면적과 기공 부피를 계산하고, 기공 크기 분포를 평가하는 데 사용됩니다. 신뢰할 수 있는 측정을 위해서는 시료를 완전히 활성화하여 용매를 제거해야 하며, 시료 질량이 매우 중요합니다. 시료 질량(g)과 비표면적(m²/g)의 곱은 일반적으로 100m²를 초과해야 합니다. 표면적은 BET 모델을 사용하여 계산됩니다. 정확한 BET 결과는 Rouquerol 기준에 따라 등온선의 선형 영역을 적절하게 선택하는 데 달려 있습니다. 잘못된 선택은 표면적에 몇 배의 편차를 초래할 수 있습니다(그림 2, 표 1). CIQTEK Climber 시리즈 기기 특징 자동 BET 포인트 선택 인간의 실수를 없애고 MOF에 대해서도 신뢰할 수 있는 결과를 제공합니다. 그림 2. (a) 정확한 데이터 지점을 나타내는 루케롤 플롯(점선 왼쪽); (b) BET 플롯 c(녹색)와 d(분홍색)에 사용된 구간을 보여주는 N₂ 흡착/탈착 등온선; (c, d) p/p₀ 범위가 각각 0.17~0.27 및 0.004~0.05인 BET 플롯. 실선은 p/p₀에서의 n(m)(루케롤 기준 iii)에 해당하고, 점선은 1/√C + 1(기준 iv)에 해당합니다. 표 1. 그림 2의 플롯 c와 d에 대한 BET 면적, 기울기, 절편, C 상수, 단층 용량 n(m), R², 1/√C + 1 및 해당 p/p₀ 값입니다. 3. 열중량 분석(TGA) TGA는 열 안정성을 평가하고 용매 손실을 기반으로 기공 부피를 대략적으로 추정할 수 있습니다. 분해 거동은 운반 기체(N₂, 공기, O₂)에 크게 의존하므로 보고서에 이를 명시해야 합니다. TGA와 가변 온도 PXRD 또는 흡착 실험을 병행하면 열처리 후 구조적 안정성을 검증할 수 있습니다. 4. 주사전자현미경(SEM) SEM은 결정 형태와 크기를 관찰하며, 원소 분석을 위해 EDS와 결합할 수 있습니다. MOF는 절연성이 높은 경우가 많기 때문에 대전 아티팩트가 발생할 수 있으며, 이는 일반적으로 전도성 층(예: Au 또는 Os)으로 코팅하면 완화됩니다. 가속 전압은 분해능과 표면 세부 정보에 영향을 미칩니다. 전압이 높을수록 결정 윤곽은 더 선명해지지만 표면 특성이 손상될 수 있습니다. EDS 정량화를 위해서는 대상 금속과 신호가 겹치지 않도록 코팅 원소를 고려해야 합니다. 그림 3. PCN-222(Fe)의 SEM 이미지: Os 코팅(a, c) 및 코팅되지 않은 상태(b, d), ...