Products

제품

CIQTEK은 주사전자현미경(SEM), 전자 상자성 공명(전자 스핀 공명) 분광학, 주사 NV 프로브 현미경, 가스 흡착 분석기 등과 같은 고부가가치 과학 기기의 제조업체이자 글로벌 공급업체입니다.
더 알아보기
메시지를 남겨주세요
제출하다
응용
Application Cases |  The application of scanning electron microscope in metal fracture analysis
Application Cases | The application of scanning electron microscope in metal fracture analysis
What is a metal fracture? When a metal breaks under external forces, it leaves behind two matching surfaces called "fracture surfaces" or "fracture faces." The shape and appearance of these surfaces contain important information about the fracture process.   By observing and studying the morphology of the fracture surface, we can analyze the causes, properties, modes, and mechanisms of the fracture. It also provides insights into the stress conditions and crack propagation rates during the fracture. Similar to an "on-site" investigation, the fracture surface preserves the entire process of fracture. Therefore, examining and analyzing the fracture surface is a crucial step and method in studying metal fractures. Scanning electron microscope, with its large depth of field and high resolution, has been widely used in the field of fracture analysis.   The application of scanning electron microscope in metal fracture analysis   Metal fractures can occur in various failure modes. Based on the deformation level before fracture, they can be classified as brittle fracture, ductile fracture, or a mixture of both. Different fracture modes exhibit characteristic microscopic morphologies, and CIQTEK scanning electron microscope characterization can help researchers quickly analyze fracture surfaces.   Ductile fracture   Ductile fracture refers to the fracture that occurs after a significant amount of deformation in the component, and its main feature is the occurrence of obvious macroscopic plastic deformation. The macroscopic appearance is cup-cone or shear with a fibrous fracture surface, characterized by dimples. As shown in Figure 1, at the microscale, the fracture surface consists of small cup-shaped micropores called dimples. Dimples are microvoids formed by localized plastic deformation in the material. They nucleate, grow, and coalesce, eventually leading to fracture, and leaving traces on the fracture surface.   Figure 1: Ductile fracture surface of metal / 10kV / Inlens   Brittle fracture   Brittle fracture refers to the fracture that occurs without significant plastic deformation in the component. The material undergoes little or no plastic deformation before fracture. Macroscopically, it appears crystalline, and microscopically, it can exhibit intergranular fracture, cleavage fracture, or quasi-cleavage fracture. As shown in Figure 2, it is a mixed brittle-ductile fracture surface of metal. In the ductile fracture region, noticeable dimples can be observed. In the brittle fracture region, intergranular brittle fracture occurs along different crystallographic orientations. At the microscale, the fracture surface exhibits multiple facets of the grains, with clear grain boundaries and a three-dimensional appearance. Smooth and featureless morphology is often observed on the grain boundaries. When the grains are coarse, the fracture surface appears crystalline, also known as a crystalline fracture; when the...
적용사례 | 전해동박의 전계방출 SEM 응용
적용사례 | 전해동박의 전계방출 SEM 응용
고성능 리튬동박은 리튬이온 배터리의 핵심 소재 중 하나로 배터리 성능과 밀접한 관련이 있다. 전자 기기와 신에너지 자동차의 고용량, 고밀도, 고속 충전에 대한 수요가 증가함에 따라 배터리 소재에 대한 요구 사항도 높아지고 있습니다. 더 나은 배터리 성능을 달성하기 위해서는 표면 품질, 물리적 특성, 안정성, 균일성 등 리튬 동박의 전반적인 기술 지표를 향상시킬 필요가 있습니다. 주사전자현미경-EBSD 기법을 이용한 미세구조 분석 재료과학에서는 조성과 미세구조가 기계적 특성을 결정합니다. 주사전자현미경(SEM)은 재료의 표면 특성화를 위해 일반적으로 사용되는 과학 장비로, 구리 호일의 표면 형태와 입자 분포를 관찰할 수 있습니다. 또한 EBSD(Electron Backscatter Diffraction)는 금속 재료의 미세 구조를 분석하는 데 널리 사용되는 특성화 기술입니다. 전계방출형 주사전자현미경에 EBSD 검출기를 구성함으로써 연구자들은 가공, 미세구조 및 기계적 특성 간의 관계를 확립할 수 있습니다. 아래 그림은 CIQTEK 전계 방출 SEM5000으로 포착한 전해 동박의 표면 형태를 보여줍니다. 동박 매끄러운 표면/2kV/ETD 구리박 무광택 표면e/2kV/ETD 샘플 표면이 충분히 평평하면 SEM 후방 산란 검출기를 사용하여 전자 채널 콘트라스트 이미징(ECCI)을 얻을 수 있습니다. 전자 채널링 효과는 입사 전자빔이 브래그 회절 조건을 만족할 때 결정 격자점에서 전자 반사가 크게 감소하여 많은 전자가 격자를 관통하여 "채널링" 효과를 나타내는 것을 의미합니다. 따라서 연마된 편평한 다결정 재료의 경우 후방 산란 전자의 강도는 입사 전자빔과 결정 평면 사이의 상대적인 방향에 따라 달라집니다. 잘못된 방향이 더 큰 입자는 더 강한 후방 산란 전자 신호와 더 높은 대비를 생성하여 ECCI를 통해 입자 방향 분포의 질적 결정을 가능하게 합니다. ECCI의 장점은 샘플 표면에서 더 넓은 영역을 관찰할 수 있다는 것입니다. 따라서 EBSD를 획득하기 전에 입자 크기, 결정학적 방향, 변형 영역 등의 관찰을 포함하여 샘플 표면의 미세 구조를 신속하게 거시적으로 특성화하기 위해 ECCI 이미징을 사용할 수 있습니다. 그런 다음 EBSD 기술을 사용하여 적절한 스캐닝 영역을 설정할 수 있습니다. 관심 영역의 결정학적 방향 교정을 위한 단계 크기. EBSD와 ECCI의 조합은 재료 연구에서 결정학 방향 이미징 기술의 장점을 최대한 활용합니다. 이온빔 단면 연마 기술을 사용하여 CIQTEK은 주사 전자 현미경의 ECCI 이미징 및 EBSD 분석 요구 사항을 완전히 충족하는 평평한 구리 호일 단면을 얻습니다. 아래
이산화티타늄 특성화에 가스 흡착 기술 적용
이산화티타늄 특성화에 가스 흡착 기술 적용
요약: 티타늄 화이트로 널리 알려진 이산화티타늄은 코팅, 플라스틱, 고무, 제지, 잉크 및 섬유와 같은 다양한 산업에서 광범위하게 사용되는 중요한 백색 무기 안료입니다. 연구에 따르면 물리적인 광촉매 성능, 은폐력, 분산성 등 이산화티타늄의 화학적 성질은 비표면적 및 기공 구조와 밀접한 관련이 있습니다. 이산화티타늄의 비표면적 및 기공 크기 분포와 같은 매개변수의 정확한 특성화를 위해 정적 가스 흡착 기술을 사용하면 이산화티타늄의 품질을 평가하고 특정 응용 분야에서 성능을 최적화하여 다양한 분야에서 효율성을 더욱 높일 수 있습니다. 이산화티타늄에 대하여: 이산화티타늄은 주로 이산화티타늄으로 구성된 필수 백색 무기 안료입니다. 색상, 입자 크기, 비표면적, 분산성 및 내후성과 같은 매개변수는 다양한 응용 분야에서 이산화티타늄의 성능을 결정하며, 비표면적이 주요 매개변수 중 하나입니다. 비표면적 및 기공 크기 특성화는 이산화티타늄의 분산성을 이해하는 데 도움이 되며 이를 통해 코팅 및 플라스틱과 같은 응용 분야에서 성능을 최적화합니다. 비표면적이 높은 이산화티타늄은 일반적으로 은폐력과 착색력이 더 강합니다. 또한, 이산화티타늄을 촉매 담체로 사용할 경우 기공 크기가 클수록 활성성분의 분산이 향상되어 전체적인 촉매 활성이 향상되고, 기공 크기가 작을수록 활성점의 밀도가 높아져 활성점의 밀도가 높아진다는 연구 결과도 있습니다. 반응 효율을 향상시킵니다. 따라서 이산화티타늄의 기공구조를 조절함으로써 촉매 담지체로서의 성능을 향상시킬 수 있다. 요약하면, 비표면적과 기공 크기 분포의 특성화는 다양한 응용 분야에서 이산화티타늄의 성능을 평가하고 최적화하는 데 도움이 될 뿐만 아니라 생산 공정에서 품질 관리의 중요한 수단으로도 사용됩니다. 티타늄의 정확한 특성화 이산화물은 다양한 응용 분야의 요구 사항을 충족하기 위해 고유한 특성을 더 잘 이해하고 활용할 수 있게 해줍니다. 이산화티타늄 특성화에 있어서 가스흡착기법의 응용예: 1. DeNOx 촉매용 이산화티타늄의 비표면적 및 기공크기 분포 특성 선택적 촉매 환원(SCR)은 일반적으로 적용되고 연구되는 배연 탈질 기술 중 하나입니다. 촉매는 성능이 질소산화물 제거 효율에 직접적인 영향을 미치기 때문에 SCR 기술에서 중요한 역할을 합니다. 이산화티타늄은 DeNOx 촉매의 담체 물질 역할을 하며 주로 활성 성분과 촉매 첨가제에 기계적 지지력과 내식성을 제공하는 동시에 반응 표면적을 늘리고 적절한 기공 구조를 제
도마뱀의 색 변화 뒤에 숨은 과학: CIQTEK 전계 방출 주사 전자 현미경의 통찰력
도마뱀의 색 변화 뒤에 숨은 과학: CIQTEK 전계 방출 주사 전자 현미경의 통찰력
매혹적인 자연의 세계에서 도마뱀은 색깔을 바꾸는 놀라운 능력으로 유명합니다. 이러한 생생한 색상은 우리의 관심을 사로잡을 뿐만 아니라 도마뱀의 생존과 번식에 중요한 역할을 합니다. 그러면 이 눈부신 색상의 기초가 되는 과학적 원리는 무엇입니까? 이 기사는 CIQTEK 전계 방출 주사 전자 현미경(SEM) 제품과 함께 도마뱀의 색상 변화 능력 뒤에 있는 메커니즘을 탐구하는 것을 목표로 합니다. 섹션 1: 도마뱀 착색 메커니즘 1.1 C형성 메커니즘에 따른 카테고리: P착색된 C색채 및 S구조적 C색s 자연e 동물 색상은 형성 메커니즘에 따라 두 가지 범주로 나눌 수 있습니다. P색소 C색 S구조적 C색. 유색C색소 는 "원색"의 원리와 유사하게 안료 농도의 변화와 다양한 색상의 첨가 효과에 의해 생성됩니다. 구조색상반면에, 미세 구조화된 생리적 구성 요소의 빛 반사에 의해 생성되어 반사된 빛의 파장이 달라집니다. 구조적 색상의 기본 원리는 주로 광학 원리에 기초합니다. 1.2 도마뱀 비늘의 구조: SEM 이미징을 통한 미세한 통찰 다음 이미지(그림 1-4)는 gCIQTEK SEM5000Pro-Field Emission Scanning Electron Microscope를 사용하여 도마뱀 피부 세포의 홍채포 특성을 묘사합니다. 이리도포어는 회절 격자와 유사한 구조적 배열을 나타내며 이러한 구조를 결정판이라고 부릅니다. 결정판은 다양한 파장의 빛을 반사하고 산란시킬 수 있습니다. 섹션 2: 색상 변화에 대한 환경 영향 2.1 위장: 주변 환경에 적응하기 연구에 따르면 도마뱀 홍채포의 결정판 크기, 간격 및 각도의 변화는 피부에서 산란되고 반사되는 빛의 파장을 변경할 수 있음이 밝혀졌습니다. 이 관찰은 도마뱀 피부의 색상 변화 뒤에 있는 메커니즘을 연구하는 데 매우 중요합니다. 2.2 고해상도 이미징: 도마뱀 피부세포 특성화 S통조림 E전자M현미경 을 사용하여 도마뱀 피부 세포의 특성을 분석하면 결정질의 구조적 특성을 육안으로 조사할 수 있습니다. 크기, 길이 및 배열과 같은 피부판. 그림1. 도마뱀 피부의 초구조/30 kV/STEM 그림2. 도마뱀 피부의 초구조/30 kV/STEM 그림3. 도마뱀 피부의 초구조/30 kV/STEM 그림4. 도마뱀 피부의 초구조/30 kV/STEM 3항: CIQTEK 전계 방출 SEM을 통한 도마뱀 착색 연구의 발전 CIQTEK 에서 개발한 "Automap" 소프트웨어를 사용하면 최대 1cm 범위까지 도마뱀 피부 세포의 대규모 매크로 구조 특성 분석을 수행할 수 있습니다. . 따라서 고해상도 세부 사항 또는 거시적 영역 특성화, CIQTEK E전자 Micrscope 가 가능합니다. “오토맵” 조작 인터페이스 CIQTEK Field Emission Scanning Electron Microscope (SEM) 고해상도 이미징
자연 하위 출판! CIQTEK EPR 분광학은 나노 스핀 센서 연구를 지원합니다
자연 하위 출판! CIQTEK EPR 분광학은 나노 스핀 센서 연구를 지원합니다
전자 스핀 센서는 감도가 높으며 전기장, 자기장, 분자 또는 단백질 역학, 핵 또는 기타 입자 등과 같은 다양한 물리적, 화학적 특성을 감지하는 데 널리 사용될 수 있습니다. 이러한 고유한 장점과 잠재적 응용 분야는 스핀 기반 센서는 뜨거운 연구 방향을 제시합니다.  Sc 3 C 2 @C 80 은 탄소 케이지로 보호되는 매우 안정적인 전자 스핀을 갖추고 있어 다공성 물질 내부의 가스 흡착 감지에 적합합니다. Py-COF는 독특한 흡착 특성을 지닌 최근에 등장한 다공성 유기 골격 물질입니다. 포르밀기와 아미노기가 있는 자가 축합 빌딩 블록을 사용하여 합성되며 이론적인 기공 크기는 1.38nm입니다. 따라서 메탈로풀러렌  Sc 3 C 2 @C 80  단위(약 0.8 nm 크기)가 Py-COF의 나노 크기 기공에 들어갈 수 있습니다.   과학 아카데미 화학 연구소의 Wang 연구원은 다공성 유기 구조 내부의 가스 흡착을 감지하기 위해 메탈로풀러렌을 기반으로 한 나노 스핀 센서를 개발했습니다. 상자성 메탈로풀러렌  (Sc 3 C 2 @C 80 )은 피렌 기반 공유 유기 골격(Py-COF)의 나노 크기 기공에 내장되어 있습니다. EPR 분광학( CIQTEK EPR200-Plus )은 N 2 , CO, CH 4 , CO 2 , C 3 H 6 및 C 3 H 8 에 대한 내장된 Sc 3 C 2 @C 80  스핀 프로브  의 EPR 신호를 기록하는 데 사용됩니다  .  Py-COF 내에 흡착됩니다. 이 연구는 내장된 Sc 3 C 2 @C 80 의 EPR 신호가   Py-COF의 가스 흡착 성능에 대한 규칙적인 의존성을 나타냄을 보여줍니다. 이번 연구 결과는 네이처 커뮤니케이션즈 (Nature Communications)에 ' 다공성 유기 프레임워크 내부의 가스 흡착 현장 조사를 위한 임베디드 나노 스핀 센서 ' 라는 제목으로 게재됐다.   Sc 3 C 2 @C 80을 분자 스핀 프로브로 사용하여 PyOF의 가스 흡착 성능 조사    해당 연구에서 저자는 Py에서 가스 흡착을 감지하기 위해 피렌 기반 공유 유기 프레임워크(Py-COF) 나노케이지에 내장된 스핀 프로브로 상자성 메탈로풀러렌인  Sc 3 C 2 @C 80  (크기 약 0.8nm)을 사용했습니다. -COF. Py-COF 내 N 2 , CO, CH 4 , CO 2 , C 3 H 6 및 C 3 H 8  가스 의 흡착 성능은  내장된 Sc 3 C 2 @C 80  E 전자 상자성 공명(EPR)을 모니터링하여 조사되었습니다.  신호. 연구는  Sc 3 C 2 @C 80 의 EPR 신호가 Py-COF의 가스 흡착 성능과 체계적으로 관련되어 있음을 입증했습니다. 또한 기존 흡착 등온선 측정과 달리 이 이식형 나노스케일 스핀 센서는  실시간 가스 흡착 및 탈착 모니터링을 가능하게 했습니다 . 제안된 나노스케일 스핀 센서는 금속-유기 구조체(MOF-177)의 가스 흡착 성능을 조사하는
맨 위

메시지를 남겨주세요

메시지를 남겨주세요
자세한 내용을 알아보려면 언제든지 문의하거나 견적을 요청하거나 온라인 데모를 예약하세요! 최대한 빨리 답변해 드리겠습니다.
제출하다

제품

채팅

연락하다