금속 재료는 현대 산업에서 필수적인 역할을하며 성능은 제품 품질 및 서비스 수명에 직접적인 영향을 미칩니다 재료 과학의 지속적인 개발로 인해 금속 물질의 미세한 구조 및 조성 분석에 대한 더 높은 요구 사항이 제시되었습니다 고급 특성화 도구로주사 전자 현미경(SEM) 고해상도 표면 형태 정보를 제공하고 원소 구성 결정을위한 분광 분석 기술과 결합하여 금속 재료 연구에서 중요한 도구가 될 수 있습니다 이 기사는 금속 재료의 특성화에서 SEM 기술의 적용에 대해 논의하고 관련 연구에 대한 참조 및 지침을 제공하는 것을 목표로합니다 전자 현미경의 기본 원리 (SEM)주사 전자 현미경의 작동 원리는 전자 빔과 샘플 표면 사이의 상호 작용에 기초합니다 고 에너지 전자 빔이 샘플 표면을 스캔 할 때, 2 차 전자, 후방 산란 전자, 특징적인 X- 선 등을 포함한 다양한 신호가 생성됩니다 금속 물질에 대한 SEM 샘플 준비미세 구조 분석 : Ciqtek EM은 연구자들이 관찰하는 데 도움이되는 고해상도 이미지를 제공합니다 및 금속 크기, 모양, 단계와 같은 금속 및 복합 재료의 미세 구조를 분석합니다 분포 및 결함 (예 : g., 균열 및 포함) 이것은 관계를 이해하는 데 중요합니다 재료 특성과 처리 기술 사이 α β 티타늄 합금열 영향 구역은 용접 조인트에서 가장 취약한 영역입니다 미세 구조의 변화를 연구합니다 용접 영역의 특성은 용접 문제를 해결하고 용접 품질을 향상시키는 데 큰 의미가 있습니다 구성 분석 :EDS 또는 WDS 시스템이 장착되어 있습니다. CIQTEK SEM 질적 및 정량적 원소 조성 분석 이것은 분포를 연구하는 데 매우 중요합니다 합금 요소의 패턴과 재료 특성에 미치는 영향 eds의 원소 라인 분석EDS 분석과 SEM을 결합하여 구성 변화와 불순물의 요소 분포용접 영역이 관찰 될 수 있습니다 실패 분석 : 골절, 부식 또는 기타 형태의 손상과 같은 실패 후 금속에서 발생합니다 복합 재료 인 Ciqtek SEM은 메커니즘 실패를 분석하는 핵심 도구입니다 검사함으로써 골절 표면, 부식 제품 등, 실패의 근본 원인을 식별하여 제공 할 수 있습니다 재료 신뢰성 및 수명을 향상시키기위한 통찰력 2A12 알루미늄 합금 성분의 고장2A12 알루미늄 합금은 다양한 침전 단계를 나타냅니다 형태 학적으로 크기가 큰블록 모양의 짧은 막대 모양, 체인 모양 입자 및 분산침전 블록 모양의 단계 Al/Cu/Fe/Mn과 같은 요소가 포함되어 있습니다 그만큼 다른 막대 모양과 체인과 같은 침전물은 주로입니다 AI/mg/cu 균열은 블록 모양을 따라 전파됩니다하드 단계 새로운 재료 개발 :새로운 재료
더보기CIQTEK FIB-SEM 실증 시연 집속 이온빔 주사 전자 현미경(FIB-SEM)은 결함 진단, 수리, 이온 주입, 현장 처리, 마스크 수리, 에칭, 집적 회로 설계 수정, 칩 장치 제조 등 다양한 응용 분야에 필수적입니다. , 마스크 없는 가공, 나노구조 제작, 복합 나노 패터닝, 재료의 3차원 이미징 및 분석, 초민감 표면 분석, 표면 변형 및 투과전자현미경 표본 준비 CIQTEK은 집속 이온빔( FIB) 컬럼. 이는 나노 규모 분석을 보장하기 위해 "SuperTunnel" 전자 광학 기술, 낮은 수차 및 저전압 및 고해상도 기능을 갖춘 비자성 대물렌즈 설계를 채택한 우아하고 다재다능한 나노 규모 분석 및 표본 준비 도구입니다. 이온 컬럼은 매우 안정적인 고품질 이온 빔으로 Ga+ 액체 금속 이온 소스를 촉진하여 나노 제조 기능을 보장합니다. DB550은 통합된 나노 조작기, 가스 주입 시스템, 대물렌즈용 전기 오염 방지 메커니즘, 사용자 친화적인 GUI 소프트웨어를 갖추고 있어 올인원 나노 스케일 분석 및 제작 워크스테이션을 용이하게 합니다. DB550의 뛰어난 성능을 선보이기 위해 CIQTEK에서는 "CIQTEK FIB-SEM 실용 시연"이라는 특별 이벤트를 기획했습니다. 프로그램에서는 재료과학, 반도체 산업, 생물의학 연구 등의 분야에서 이 첨단 장비의 광범위한 응용을 보여주는 비디오를 선보일 예정입니다. 시청자는 DB550의 작동 원리를 이해할 수 있습니다., 놀라운 미세 이미지를 감상하고 과학 연구 및 산업 발전에 대한 이 기술의 중요한 의미를 탐구하십시오. 나노-마이크로필러 S페시멘 준비 나노 마이크로필라 S페시멘 준비가 성공적으로 완료되어 나노 규모 처리 및 분석에서 CIQTEK 집속 이온빔 주사 전자 현미경의 강력한 기능을 입증했습니다. 이 제품의 성능은 나노역학 테스트에 참여하는 고객에게 정확하고 효율적인 다중 모드 테스트 지원을 제공하여 재료 연구의 혁신을 촉진합니다.
더보기CIQTEK FIB-SEM 실증 시연 집속 이온빔 주사 전자 현미경(FIB-SEM) 은 결함 진단, 수리, 이온 주입, 현장 처리, 마스크 수리, 에칭, 집적 회로 설계 수정, 칩 소자 제작, 마스크리스 가공, 나노 구조 제작, 복합 나노 패터닝, 3차원 이미징 및 재료 분석, 초민감 표면 분석, 표면 개질, 투과전자현미경 시편 준비 CIQTEK은 FIB-SEM DB550을 출시했습니다. 이 제품은 집속형 전자현미경(FE-SEM)을 독립적으로 제어할 수 있는 전계방출주사전자현미경(FE-SEM)이 특징입니다. 이온빔(FIB) 컬럼. “SuperTunnel” 전자 광학 기술, 낮은 수차 및 비-광학 기술을 채택한 우아하고 다재다능한 나노 스케일 분석 및 시료 준비 도구입니다. 나노 규모 분석을 보장하기 위해 저전압 및 고해상도 기능을 갖춘 자기 대물렌즈 설계. 이온 컬럼은 매우 안정적인 고품질 이온 빔으로 Ga+ 액체 금속 이온 소스를 촉진하여 나노 제조 기능을 보장합니다. DB550에는 나노 조작기, 가스 주입 시스템, 대물렌즈용 전기 오염 방지 메커니즘, 사용자 친화적인 GUI 소프트웨어가 통합되어 있습니다. 올인원 나노 스케일 분석 및 제작 워크스테이션. DB550의 뛰어난 성능을 선보이기 위해 CIQTEK은 "CIQTEK FIB-SEM 실용 시연"이라는 특별 이벤트를 계획했습니다. 이 프로그램은 이 첨단 장비의 광범위한 적용을 보여주는 비디오를 제공합니다. 재료과학, 반도체 산업, 생명의학 연구 등의 분야. 시청자는 DB550의 작동 원리를 이해하고 놀라운 미세 이미지를 감상하며 과학 연구 및 산업 발전에 대한 이 기술의 중요한 의미를 탐구하게 됩니다. 페라이트-마르텐사이트강 투과 시험편의 제작 FIB-SEM DB550 CIQTEK에서 개발한 제품은 페라이트-마르텐사이트 강의 투과 시편을 완벽하게 준비할 수 있는 능력을 보유하고 있습니다. 이 기능을 통해 나노 규모 영역의 연구자들은 인터페이스 특성, 미세 구조 형태, 페라이트 및 마르텐사이트 상의 진화 과정을 직접 관찰할 수 있습니다. 이러한 관찰은 페라이트-마틴 강의 상변태 동역학, 미세 구조 조직 및 기계적 특성 간의 관계에 대한 이해를 심화시키는 중요한 단계입니다.
더보기금속골절이란 무엇인가요? 외력에 의해 금속이 파손되면 "파단면" 또는 "파단면"이라고 불리는 두 개의 일치하는 표면이 남습니다. 이러한 표면의 모양과 모양에는 파손 과정에 대한 중요한 정보가 포함되어 있습니다. 파단면의 형태를 관찰하고 연구함으로써 파단의 원인, 특성, 형태 및 메커니즘을 분석할 수 있습니다. 또한 파손 중 응력 조건과 균열 전파 속도에 대한 통찰력을 제공합니다. "현장" 조사와 유사하게 파손 표면은 전체 파손 과정을 보존합니다. 따라서 파단면을 조사하고 분석하는 것은 금속 파단을 연구하는 데 중요한 단계이자 방법입니다. 주사전자현미경은 심도가 크고 해상도가 높아 파괴해석 분야에서 널리 사용되고 있다. 주사형 전자현미경pe 금속 파괴 분석에의 응용 금속 파손은 다양한 고장 모드에서 발생할 수 있습니다. 파단 전의 변형 정도에 따라 취성파괴, 연성파괴 또는 이 둘의 혼합파괴로 분류할 수 있습니다. 다양한 파괴 모드는 특징적인 미세 형태를 나타내며 CIQTEK 주사 전자 현미경 특성 분석은 연구자가 파괴 표면을 신속하게 분석하는 데 도움이 될 수 있습니다. 연성파괴 연성파괴란 부품에 상당한 양의 변형이 발생한 후 발생하는 파단을 말하며, 그 주요 특징은 눈에 띄는 거시적 소성변형이 발생한다는 점이다. 육안으로 볼 때 외관은 딤플이 특징인 섬유성 파단면을 가진 컵 원추형 또는 전단형입니다. 그림 1에 표시된 것처럼 미세 규모에서 파단 표면은 딤플이라고 불리는 작은 컵 모양의 미세 기공으로 구성됩니다. 딤플은 재료의 국부적인 소성 변형에 의해 형성된 미세 공극입니다. 이들은 핵을 생성하고 성장하고 합체하여 결국 파단을 일으키고 파단면에 흔적을 남긴다. 그림 1: 금속의 연성파괴면 / 10kV / Inlens 취성파괴 취성파괴란 부품에 큰 소성변형 없이 발생하는 파단을 말한다. 재료는 파손되기 전에 소성 변형이 거의 또는 전혀 발생하지 않습니다. 육안으로는 결정질로 보이며, 현미경으로는 입계파괴, 벽개파괴, 준벽개파괴 등을 나타낼 수 있다. 그림 2에서 볼 수 있듯이 금속의 취성-연성 혼합 파괴면이다. 연성파괴 부위에는 눈에 띄는 딤플이 관찰됩니다. 취성파괴 영역에서는 서로 다른 결정학적 방향을 따라 입계 취성파괴가 발생한다. 미세 규모에서 파단 표면은 명확한 결정립 경계와 3차원 외관을 갖는 결정립의 여러 측면을 나타냅니다. 매끄럽고 특징이 없는 형태가 결정립 경계에서 종종 관찰됩니다. 입자가 거칠면 파단 표면이 결정질로 나타나며, 이는 결정 파단이라고도 알려져 있습니다.
더보기요약: 티타늄 화이트로 널리 알려진 이산화티타늄은 코팅, 플라스틱, 고무, 제지, 잉크 및 섬유와 같은 다양한 산업에서 광범위하게 사용되는 중요한 백색 무기 안료입니다. 연구에 따르면 물리적인 광촉매 성능, 은폐력, 분산성 등 이산화티타늄의 화학적 성질은 비표면적 및 기공 구조와 밀접한 관련이 있습니다. 이산화티타늄의 비표면적 및 기공 크기 분포와 같은 매개변수의 정확한 특성화를 위해 정적 가스 흡착 기술을 사용하면 이산화티타늄의 품질을 평가하고 특정 응용 분야에서 성능을 최적화하여 다양한 분야에서 효율성을 더욱 높일 수 있습니다. 이산화티타늄에 대하여: 이산화티타늄은 주로 이산화티타늄으로 구성된 필수 백색 무기 안료입니다. 색상, 입자 크기, 비표면적, 분산성 및 내후성과 같은 매개변수는 다양한 응용 분야에서 이산화티타늄의 성능을 결정하며, 비표면적이 주요 매개변수 중 하나입니다. 비표면적 및 기공 크기 특성화는 이산화티타늄의 분산성을 이해하는 데 도움이 되며 이를 통해 코팅 및 플라스틱과 같은 응용 분야에서 성능을 최적화합니다. 비표면적이 높은 이산화티타늄은 일반적으로 은폐력과 착색력이 더 강합니다. 또한, 이산화티타늄을 촉매 담체로 사용할 경우 기공 크기가 클수록 활성성분의 분산이 향상되어 전체적인 촉매 활성이 향상되고, 기공 크기가 작을수록 활성점의 밀도가 높아져 활성점의 밀도가 높아진다는 연구 결과도 있습니다. 반응 효율을 향상시킵니다. 따라서 이산화티타늄의 기공구조를 조절함으로써 촉매 담지체로서의 성능을 향상시킬 수 있다. 요약하면, 비표면적과 기공 크기 분포의 특성화는 다양한 응용 분야에서 이산화티타늄의 성능을 평가하고 최적화하는 데 도움이 될 뿐만 아니라 생산 공정에서 품질 관리의 중요한 수단으로도 사용됩니다. 티타늄의 정확한 특성화 이산화물은 다양한 응용 분야의 요구 사항을 충족하기 위해 고유한 특성을 더 잘 이해하고 활용할 수 있게 해줍니다. 이산화티타늄 특성화에 있어서 가스흡착기법의 응용예: 1. DeNOx 촉매용 이산화티타늄의 비표면적 및 기공크기 분포 특성 선택적 촉매 환원(SCR)은 일반적으로 적용되고 연구되는 배연 탈질 기술 중 하나입니다. 촉매는 성능이 질소산화물 제거 효율에 직접적인 영향을 미치기 때문에 SCR 기술에서 중요한 역할을 합니다. 이산화티타늄은 DeNOx 촉매의 담체 물질 역할을 하며 주로 활성 성분과 촉매 첨가제에 기계적 지지력과 내식성을 제공하는 동시에 반응 표면적을 늘리고 적절한 기공 구조를 제
더보기분자체는 분자체 특성을 지닌 인공적으로 합성된 수화 알루미노실리케이트 또는 천연 제올라이트입니다. 그들은 구조적으로 균일한 크기의 기공과 잘 배열된 채널과 공동을 가지고 있습니다. 다양한 기공 크기의 분자체는 다양한 크기와 모양의 분자를 분리할 수 있습니다. 그들은 흡착, 촉매작용, 이온교환과 같은 기능을 가지고 있어 석유화학공학, 환경보호, 생물의학, 에너지 등 다양한 분야에서 엄청난 응용 가능성을 제공합니다. 1925년에 제올라이트의 분자 분리 효과가 처음으로 보고되었고, 제올라이트는 분자체( molecular sieve) 라는 새로운 이름을 얻었습니다 . 그러나 제올라이트 분자체의 작은 기공 크기로 인해 적용 범위가 제한되어 연구자들은 더 큰 기공 크기를 갖는 메조다공성 물질 개발에 관심을 돌렸습니다. 메조다공성 물질(기공 크기가 2~50nm 범위인 다공성 물질의 일종)은 매우 높은 표면적, 규칙적인 기공 구조 및 지속적으로 조정 가능한 기공 크기를 가지고 있습니다. 메조다공성 재료는 처음부터 학제간 개척 분야 중 하나가 되었습니다. 분자체의 경우 입자 크기와 입자 크기 분포는 특히 촉매 연구에서 제품 공정 성능과 유용성에 직접적인 영향을 미치는 중요한 물리적 매개변수입니다. 분자체의 결정립 크기, 기공 구조, 제조 조건은 촉매 성능에 큰 영향을 미칩니다. 따라서 분자체 결정 형태의 변화를 탐구하고, 그 모양을 정밀하게 제어하며, 촉매 성능을 조절하고 향상시키는 것은 매우 중요하며 항상 분자체 연구의 중요한 측면이었습니다. 주사 전자 현미경은 분자체의 구조-성능 관계를 연구하는 데 중요한 현미경 정보를 제공하여 분자체의 합성 최적화 및 성능 제어를 안내하는 데 도움을 줍니다. ZSM-5 분자체는 MFI 구조를 가지고 있습니다. 다양한 결정 형태를 지닌 MFI형 분자체 촉매의 제품 선택성, 반응성 및 안정성은 형태에 따라 달라질 수 있습니다. 그림 1(a) MFI 뼈대 토폴로지 다음은 CIQTEK 고해상도 전계 방출 주사 전자 현미경 SEM5000X를 사용하여 캡처한 ZSM-5 분자체의 이미지입니다 . 그림 1(b) ZSM-5 분자체/500V/인렌즈 SBA-15 는 2차원 육각형 기공 구조를 가진 일반적인 실리콘 기반 메조기공 물질로 기공 크기는 일반적으로 3~10nm입니다. 대부분의 메조다공성 물질은 비전도성이며 일반적으로 사용되는 코팅 전처리 방법(Pt 또는 Au 포함)은 나노 크기의 기공을 차단하여 미세 구조의 특성에 영향을 미칠 수 있습니다. 따라서 이러한 샘플은 일반적으로 코팅 전처리를 거치지 않으며, 이를 위
더보기다공성 흡착제는 독특한 다공성 구조와 특성으로 인해 환경 정화, 에너지 저장 및 촉매 전환 분야에서 중요한 역할을 합니다. 다공성 흡착제는 일반적으로 비표면적이 높고 기공 분포가 풍부하여 가스 또는 액체의 분자와 효과적으로 상호 작용할 수 있습니다. BET 및 P 광석 분포 와 같은 매개변수의 특성을 정확하게 파악하기 위해 정적 가스 흡착 방법을 사용하면 다공성 흡착제의 특성 및 흡착 성능을 더 깊이 이해하는 데 도움이 될 수 있습니다 . 다공성 흡착제의 BET 및 P or D 분포 다공성 흡착제는 비표면적이 크고 기공 구조가 풍부한 물질로, 물리적 또는 화학적 흡착을 통해 기체 또는 액체 중의 분자를 포획하고 고정할 수 있습니다. 그 종류는 무기 다공성 흡착제(활성탄, 실리카겔 등), 유기 고분자 흡착제(이온교환수지 등), 배위고분자(MOF 등), 복합 다공성 흡착제 등 다양합니다. 다공성 흡착제의 물리적 특성에 대한 철저한 이해는 성능을 최적화하고 응용 분야를 확장하는 데 중요합니다. 다공성 흡착제 산업에서 BET 표면적 및 다공도 측정 분석기 의 적용 방향에는 주로 품질 관리, 신소재 연구 개발, 분리 공정 최적화 등이 포함됩니다. 비표면적과 기공 분포를 정확하게 테스트하여 다공성 흡착제의 성능을 확인합니다. 특정 응용 요구 사항을 충족하고 표적 분자의 선택적 흡착을 향상시키기 위해 표적 방식으로 개선될 수 있습니다. 요약하면, 가스 흡착 특성화를 통해 다공성 흡착제의 비표면적과 기공 분포를 분석하는 것은 흡착 용량, 선택성 및 효율성을 평가하는 데 유익하며, 새로운 고효율 흡착제 개발을 촉진하는 데 큰 의미가 있습니다. MOF 재료의 가스 흡착 특성 특성 분석 금속-유기 골격 물질(MOF)은 높은 다공성, 큰 비표면적, 조정 가능한 구조 및 손쉬운 기능화로 인해 많은 주목을 받는 새로운 유형의 흡착 재료가 되었습니다. 작용기 변형과 기공 크기 조정의 시너지적 조절을 통해 MOF 물질의 CO 2 포집 및 분리 성능이 어느 정도 향상될 수 있습니다. UiO-66은 가스 흡착, 촉매 반응, 분자 분리 및 기타 분야에서 자주 사용되는 널리 사용되는 MOF 흡착제입니다. 다음은 CIQTEK V-3220&3210 BET 표면적 및 다공도 측정 분석기를 사용하여 UiO-66 재료의 특성을 분석한 사례입니다 . As shown on the left side of Figure 1, the specific surface area of UiO-66 is 1253.41 m2/g. A high specific surface area can provide more active sites, which is beneficial to improving its adsorption performance. It can be seen from the N2-BET Isotherm Linear Plot ( (in Figure 1) that the adsorption amount has a sharp upward trend in the low partial pressure area (P/P0<0.1), indicating that there is a certain amount of microporous structure in the material, reaching a certain relative pressure. A plateau appears in the final adsorption, and as the pressure increases, the adsorption isotherm continues to rise until adsorption saturation. From the SF-Pore Distribution (Right in Figure 1), it can be concluded that the most probable pore diameter of this sample is 0.56 nm. By designing and regulating the specific surface area and pore structure of MOFs materials, the adsorption selectivity and separation effect can be further improved. In addition to surface structure characterization (BET surface area, Pore Distribution, Pore Volume, etc.), gas adsorption techniques can be used to evaluate the storage capacity of porous adsorbents for various gases, such as CO2, CH4 and H2 etc. under applied pressure and application temperature conditions. The CIQTEK H-2210&2420 High Temperature Hydrogen Storage Gas Adsorption Analyzer can be used to detect the adsorption and separation capabilities of materials for H2, CO2, N2, O2, CH4 and other gases under different temperatures and pressure environments. It can effectively characterize key adsorption and desorption gas properties such as material adsorption and desorption characteristics, amount and selectivity. As shown in Figure 2...
더보기일반적으로 사용되는 현미경 분석 도구인 주사전자현미경은 모든 유형의 금속 파손, 파손 유형 결정, 형태 분석, 파손 분석 및 기타 연구에서 관찰할 수 있습니다. 금속 골절이란 무엇입니까? 금속이 외력에 의해 부서지면 부서진 부위에 두 개의 일치하는 부분이 남게 되는데, 이를 "파괴"라고 합니다. 이 골절의 모양과 모양에는 골절 과정에 대한 중요한 정보가 많이 포함되어 있습니다. 파단의 형태를 관찰하고 연구함으로써 원인, 성격, 형태, 메커니즘 등을 분석할 수 있으며, 파단 당시의 응력상태와 균열확장률 등의 세부사항도 이해할 수 있다. 골절은 "장면"처럼 골절이 발생하는 전체 과정을 유지합니다. 따라서 금속파괴 문제를 연구하는데 있어서 파단을 관찰하고 분석하는 것은 매우 중요한 단계이자 수단이다. 주사전자현미경은 피사계 심도가 크고 해상도가 높다는 장점이 있어 파괴 분석 분야에서 널리 사용되어 왔습니다. 금속 파괴 분석 에 주사 전자 현미경 을 적용한 연구 금속파괴의 파괴형태는 다양하다. 파단 전의 변형 정도에 따라 분류하면 취성파괴, 연성파괴, 취성파괴와 연성파괴가 혼합된 파단으로 나눌 수 있다. 다양한 골절 형태는 특징적인 미세한 형태를 가지며, 이는 연구자들이 골절 분석을 신속하게 수행하는 데 도움이 되도록 SEM으로 특성화할 수 있습니다. 연성파괴 연성파괴는 부재의 큰 변형 후에 발생하는 파단으로, 주로 상당한 거시소성변형을 특징으로 한다. 거시적 형태는 컵-원추형 골절 또는 순수 전단형 골절이며, 골절 표면은 섬유질이고 단단한 둥지로 구성됩니다. 그림 1에서 볼 수 있듯이 현미경으로 보면 균열의 특징은 다음과 같습니다. 균열 표면은 일반적으로 질긴 포사(tough fossa)라고 불리는 여러 개의 작은 와인잔 모양의 미세 다공성 구덩이로 구성됩니다. 인성와(toughness fossa)는 미세 공극에 의해 생성된 미세 영역 범위의 재료가 핵 생성/성장/응집을 통해 소성 변형되고 최종적으로 서로 연결되어 파괴된 후 파괴 표면에 남는 흔적이다. 그림 1 금속 연성파괴파괴/10kV/Inlens 취성 파괴 취성파괴란 부재가 큰 변형 없이 파단되는 것을 말한다. 파손 시 재료의 소성 변형이 거의 없습니다. 거시적으로는 결정성이지만, 미시적으로는 결정에 따른 균열, 붕괴 균열 또는 준 붕괴 균열을 포함합니다. 그림 2에서 볼 수 있듯이 금속의 혼합 취성-연성 파괴 파괴는 연성 파괴 영역에서 독특한 인성 둥지 특징을 관찰할 수 있습니다. 취성 파괴 영역에서는 결정 방향 취성 파괴에 속하
더보기