수세기 동안 인류는 자기와 그와 관련된 현상을 쉬지 않고 탐구해 왔습니다. 전자기학과 양자역학 초기에는 자석이 철을 끌어당기는 것과 새, 물고기, 곤충이 수천 마일 떨어진 목적지 사이를 이동할 수 있는 능력을 상상하기가 어려웠습니다. 자기 기원. 이러한 자기 특성은 전자만큼 널리 퍼져 있는 기본 입자의 이동 전하와 스핀에서 비롯됩니다. 2차원 자성 재료는 큰 관심을 끄는 연구 핫스팟이 되었으며 새로운 광전자 장치 및 스핀트로닉스 장치에 중요한 응용 분야가 있는 스핀트로닉스 장치 개발의 새로운 방향을 제시합니다. 최근 Physics Letters 2021, No. 12에서는 2D 자성 재료에 대한 특집을 발표하여 다양한 관점에서 2D 자성 재료의 이론 및 실험 진행 과정을 설명했습니다. 몇 개의 원자 두께에 불과한 2차원 자성 재료는 매우 작은 실리콘 전자 장치용 기판을 제공할 수 있습니다. 이 놀라운 물질은 반 데르 발스 힘, 즉 분자간 힘에 의해 서로 쌓인 초박형 층 쌍으로 구성되며, 층 내의 원자는 화학 결합으로 연결됩니다. 원자 단위로 두껍지만 자기, 전기, 역학, 광학 측면에서 물리적, 화학적 특성을 그대로 유지합니다. 2차원 자성 재료 https://phys.org/news/2018-10-flexy-Flat-function-magnets.html에서 참조된 이미지 흥미로운 비유를 사용하자면, 2차원 자성 물질의 각 전자는 북극과 남극이 있는 작은 나침반과 같으며 이러한 "나침반 바늘"의 방향에 따라 자화 강도가 결정됩니다. 이러한 미소한 "나침반 바늘"이 자발적으로 정렬되면 자기 시퀀스가 물질의 기본 위상을 구성하여 발전기 및 모터, 자기 저항 메모리 및 광학 장벽과 같은 많은 기능 장치를 준비할 수 있습니다. 이 놀라운 특성은 2차원 자성 물질도 뜨겁게 만들었습니다. 집적 회로 제조 공정은 현재 개선되고 있지만 장치가 축소됨에 따라 양자 효과로 인해 이미 제한을 받고 있습니다. 마이크로일렉트로닉스 산업은 낮은 신뢰성과 높은 전력 소모 등 병목 현상에 직면했고, 50년 가까이 지속된 무어의 법칙(무어의 법칙: 집적 회로에 수용할 수 있는 트랜지스터의 수는 약 2배)에도 어려움을 겪었다. 18개월마다). 향후 자기 센서, 랜덤 메모리 등 새로운 스핀트로닉스 소자 분야에 2차원 자성 재료를 사용할 수 있다면 집적회로 성능의 병목 현상을 해소할 수도 있을 것이다. 우리는 이미 자기 반 데르 발스 결정이 특수한 자기전기 효과를 가지고 있다는 것을 알고 있으므로 정량적 자기 연구는 2차원 자기 재료 연구에서 필수적인 단계입니다. 그러나 나노 규모에서 이러한 자석의 자기 반응에 대한 정량적 실험 연구는 여전히 매우 부족합니다. 일부 기존 연구에서는 미크론 규모에서 결정 자성을 검출할 수 있다고 보고했지만, 이러한 기술은 아직 자화에 대한 정량적 정보를 제공하지 못할 뿐만 아니라 초박막 시료를 방해하는 자기 신호를 방해하기 쉽습니다. 따라서 검출 기술의 업데이트는 나노 규모에서 재료의 자기 특성을 조사하기 위한 매우 시급한 과제입니다. 이러한 과제를 해결하기 위해 CIQTEK 는 다이아몬드 NV 센터 및 AFM 스캐닝 이미징 기술을 기반으로 하는 스캐닝 NV 현미경인 QDAFM(Quantum Diamond Atomic Force Microscope)이라는 새로운 양자 정밀 측정을 제공합니다. 다이아몬드의 질소 공극(NV) 중심 결함의 스핀을 양자 조작하고 판독함으로써 자기 특성의 정량적 비파괴 이미징을 얻을 수 있습니다. 나노미터 규모의 높은 공간 분해능과 개별 스핀의 매우 높은 감지 감도를 통해 반데르발스 자석의 주요 자기 특성을 정량적으로 감지하고 자화, 국부적 결함 및 자기에 대한 높은 공간 분해능 자기 이미징을 수행하는 데 사용할 수 있습니다. 도메인. 비침습적이며 넓은 온도 영역을 포괄하고 자기장 측정 범위가 넓다는 고유한 장점이 있습니다. 양자 과학, 화학, 재료 과학은 물론 생물학 및 의학 연구 분야에 폭넓게 적용됩니다. 2차원 크롬 요오드화물의 자화 다이어그램 단일 스핀 현미경을 사용하여 나노 규모에서 2D 재료의 자성을 조사한 이미지 (Science, 2019, DOI: 10.1126/science.aav6926) 다음에서는 나노 자기 공명 영상, 초전도 자기 공명 영상, 세포 현장 영상 및 위상학적 자기 구조 특성화에 QDAFM의 구체적인 응용을 소개합니다. CIQTEK 양자 다이아몬드 원자현미경 ( 대기 버전과 극저온 버전) 01 나노자기공명영상 자성 재료의 경우 정적 스핀 분포를 결정하는 것은 응집 물질 물리학에서 중요한 문제이자 새로운 자기 장치 연구의 핵심입니다. QDAFM은 비침습성, 넓은 온도 영역 범위, 넓은 자기장 측정 범위 등 고유한 장점을 갖춘 높은 공간 분해능 자기 이미징을 가능하게 하는 새로운 방법을 제공합니다. 블록형 자기 도메인 벽 이미징 Tetienne, JPet al. 에서 참조된 이미지입니다 . 나노자기측정법을 스캔하여 밝혀진 초박형 강자성체의 도메인 벽 특성. 네이처 커뮤니케이션즈6, 6733(2015) 02 초전도 자기공명영상 초전도체와 소용돌이에 대한 미시적 연구는 초전도 메커니즘을 이해하는 데 중요한 정보를 제공할 수 있습니다. 저온에서 작동하는 QDAFM을 사용하면 초전도체의 자기 소용돌이에 대한 정량적 이미징 연구가 수행될 수 있으며 수많은 저온 응축 물질 시스템의 자기 측정으로 확장될 수 있습니다. 단일 자기 소용돌이의 가짜 장의 정량적 이미징 Thiel, L.et al. 극저온 양자 자력계를 사용한 정량적 나노 규모 소용돌이 이미징 에서 참조된 이미지 . 자연나노기술 11,677-681 (2016). 03 세포 In Situ 이미징 세포 내에서 나노 규모의 분자 이미징을 달성하는 것은 생물학적 ...