세포 연구를 위한 Diamond NV-center 자기 이미징 기술
빛, 전기, 열, 자성은 모두 생명 과학 측정에 관련된 중요한 물리량이며, 광학 이미징이 가장 널리 사용됩니다. 지속적인 기술 발전으로 광학 이미징, 특히 형광 이미징은 생물 의학 연구의 지평을 크게 확장했습니다. 그러나 광학 이미징은 생물학적 시료의 배경 신호, 형광 신호의 불안정성 및 절대 정량화의 어려움으로 인해 적용이 어느 정도 제한되는 경우가 많습니다. 자기공명영상(MRI)은 좋은 대안이며 관통력이 낮고 관통력이 낮기 때문에 두개골, 신경, 근육, 힘줄, 관절 및 복부골반 장기 병변 검사와 같은 일부 중요한 생명과학 시나리오에서 폭넓게 응용됩니다. 배경 및 안정성 특성. MRI는 위에서 언급한 광학 영상의 단점을 해결할 것으로 기대되지만, 낮은 감도와 낮은 공간 해상도로 인해 마이크론에서 나노미터 해상도의 조직 수준 영상에 적용하기가 어렵습니다. 최근 새롭게 개발된 양자자기센서인 질소공극(NV) 센터는 다이아몬드의 발광점 결함인 NV 센터 기반 자기영상 기술을 통해 나노미터 수준까지의 분해능으로 약한 자기 신호를 검출할 수 있으며, -침습적 . 이는 생명 과학을 위한 유연하고 호환성이 높은 자기장 측정 플랫폼을 제공합니다. 면역 및 염증, 신경퇴행성 질환, 심혈관 질환, 생체 자기 감지, 자기 공명 조영제, 특히 광학 배경 및 광학 전송 수차를 포함하는 생물학적 조직 분야에서 조직 수준 연구 및 임상 진단을 수행하는 데 고유하며 정량적 분석. Diamond NV 센터 자기 이미징 기술 다이아몬드 NV 중심 자기 이미징 기술에는 스캐닝 자기 이미징과 광역 자기 이미징이라는 두 가지 주요 유형이 있습니다. 스캐닝 자기 이미징은 다이아몬드 단색 중심 센서를 사용하는 원자간력현미경(AFM) 기술과 결합됩니다. 이미징 방법은 단일 지점 스캐닝 유형의 이미징으로 공간 해상도와 감도가 매우 높습니다. 그러나 이미징 속도와 이미징 범위로 인해 일부 영역에서는 이 기술의 적용이 제한됩니다. 반면, 광역 자기 이미징은 단일 NV 센터에 비해 NV 센터의 집중도가 높은 테더링된 다이아몬드 센서를 사용하므로 공간 분해능은 떨어지지만 광역 실시간 이미징에 큰 잠재력을 보여줍니다. 후자가 세포 자기 영상 분야의 연구에 더 적합할 수 있습니다. 응용 NV센터 세포 연구에서의 광시야 자기영상 기술 응용 1: 자기주성 박테리아의 자기 이미징 자기주성박테리아는 외부 자기장의 작용에 따라 방향적으로 이동할 수 있고 주로 토양, 호수 및 바다에서 몸에 자성 나노입자(자기솜)를 형성할 수 있는 박테리아 종류입니다. 박테리아를 다이아몬드 표면에 배치하고 광학적 방법을 사용하여 NV 센터의 양자 스핀 상태를 조사함으로써 연구자들은 박테리아의 마그네토솜에 의해 생성된 자기장 벡터 구성 요소의 이미지를 신속하게 재구성할 수 있습니다. 광시야 자기 이미징 현미경을 사용하면 서브미크론 해상도와 넓은 시야에서 여러 세포의 광학 및 자기 이미징을 동시에 수행할 수 있습니다. 이 연구는 높은 공간 해상도 조건에서 살아있는 세포 내의 생체 자기 구조를 이미징하는 새로운 접근 방식을 제공하며 세포 및 세포 네트워크 내의 광범위한 자기 신호 매핑을 가능하게 합니다. 그림 1. 자기친화성 박테리아의 자기 이미징 (이미지 제공: DL Stage et al. 살아있는 세포의 광학 자기 이미징 Nature, 2013, 496(7446): 486-489) 응용 2: 대식세포 철분 흡수의 자기 영상화 대식세포의 주요 기능은 고정 또는 유리 세포 형태의 세포 잔해 및 병원체를 식균작용(즉, 식균작용 및 소화)하고, 림프구 또는 기타 면역 세포를 활성화하여 병원체에 반응하는 것입니다. 대식세포는 다양한 기능을 가진 면역 세포이며 세포식작용, 세포 면역 및 분자 면역학 연구에 중요한 대상입니다. 연구진은 그림 2와 같이 서브미크론 해상도와 나노테슬라 감도를 갖춘 다이아몬드 NV 센터 기반 광역 자기 이미징을 사용하여 마우스 동물의 세포와 조직의 자기장을 이미지화했습니다. 이 기술의 유용성은 대식세포 철을 관찰하여 입증되었습니다. 마우스를 모델로 사용하여 간 조직 샘플에서 철분 섭취 및 검출. 또한 연구자들은 살아있는 세포에서 자성 입자의 세포내이입을 감지했습니다. 이 접근법은 MRI 복셀과 미세한 구성 요소 사이의 격차를 해소합니다. 그림 2. 대식세포 철분 흡수에 대한 자기영상 연구 (이미지 출처: HC Davis 등. 세포하 다이아몬드 자기측정법을 사용한 자기 공명 영상 대조의 미세 규모 기원 매핑, Nature Communications, 2018, 9:131) 응용 3: 면역자기 표지 세포의 자기 영상화 암은 현재 인간에게 가장 치명적인 질병 중 하나입니다. 암의 분자적 메커니즘에 대한 연구와 조기, 정확한 임상진단은 효과적인 치료의 기초입니다. 그림 3. 폐암 조직의 자기영상 연구 (이미지 출처: SY Chen et al. 다이아몬드의 양자 센서를 사용한 종양 조직의 면역자기 현미경, Proc. Natl. Acad. Sci. USA, 2022,119: e2118876119) 중국 과학기술대학교(USTC)는 조직 수준의 면역자기 라벨링 방법을 개발했습니다. 초상자성 입자는 항원-항체의 특이적 인식을 통해 종양 조직에서 PD-L1과 같은 표적 단백질 분자로 특이적으로 표지되었습니다. 그런 다음 조직 시료를 다이아몬드 표면에 밀착시키고 약 100 nm의 다이아몬드 표면 근처에 분포하는 NV 중심층을 400 nm 해상도의 자기장 이미징을 위한 2차원 양자자기 센서로 사용했습니다. NV 광시야 현미경(그림 3)은 밀리미터 시야에서 미크론 수준의 공간 분해능을 달성합니다. 마지막으로, 자기장에 대응하는 자기모멘트 분포를 딥러닝 모델을 통해 재구성하여 정량적 분석의 기초를 제공했습니다. 하버드 스미스 천체물리학 센터는 NV 광시야 자기 이미징과 함...